Publicación: Anti-Candida albicans y Antiinflamatorio In vitro de Mezclas Optimizadas de Lippia alba Aplicadas Sobre Membranas de Regeneración Ósea Guiada (ROG)
Anti-Candida albicans y Antiinflamatorio In vitro de Mezclas Optimizadas de Lippia alba Aplicadas Sobre Membranas de Regeneración Ósea Guiada (ROG)
dc.contributor.advisor | García-Sánchez, Liliana Torcoroma | |
dc.contributor.advisor | Quintero-García, Wendy Lorena | |
dc.contributor.author | Rugeles-Páez, Nohora Camila | |
dc.contributor.jury | Puerta-Arias, Juan David | |
dc.contributor.jury | Sánchez-Villamil, Juana Patricia | |
dc.date.accessioned | 2022-11-28T16:15:08Z | |
dc.date.available | 2024-10-25 | |
dc.date.available | 2022-11-28T16:15:08Z | |
dc.date.issued | 2022-10-24 | |
dc.description | Digital | |
dc.description.abstract | La Regeneración Ósea Guiada (ROG) es una técnica de aumento de reborde que a menudo requiere el uso de membranas. Estas actúan como barrera física facilitando la compartimentación de células con potencial de regeneración y excluyendo células epiteliales. La falta de propiedades osteoconductoras, la inflamación y la infección son las limitaciones más frecuentes en ROG, que requieren terapias de apoyo con biocidas, antibióticos y antiinflamatorios, que pueden promover la disbiosis y la resistencia a los antimicrobianos. Para optimizar las propiedades inmunorresistentes y antifúngicas de las membranas de colágeno, el objetivo de este trabajo fue estudiar aditivos profilácticos basados en mezclas sinérgicas de clorhexidina con fracciones enriquecidas de aceites esenciales de Lippia alba. Las combinaciones del biocida con fracciones ricas en citral y limoneno demostraron aumentar de dos a ocho veces, respectivamente, el rendimiento anti-Candida albicans de la clorhexidina, en términos de concentración inhibitoria mínima. Como pretratamientos en membranas, estas mezclas potenciaron hasta cuatro veces la acción inhibidora del crecimiento de C. albicans de la clorhexidina, en superficies. En células de macrófago murino J774A.1, se evidenció una interacción farmacológica antagónica (citoprotector) entre las fitoterapias y la clorhexidina, provocando un aumento al doble de la Concentración Citotóxica 50 biocida (CC50) y minimizando sus efectos tóxicos sobre la adhesión celular, membrana celular, potencial mitocondrial y la integridad nuclear. En los macrófagos, las fracciones enriquecidas con citral también favorecen las propiedades de respuesta inmunitaria de las membranas de colágeno (solas o en combinación con clorhexidina) aumentando la citoquina TNF-α al mismo tiempo que aumenta IL-4. Así, esta terapia combinada representa una plataforma prometedora para el desarrollo de una solución biocida profiláctica o terapéutica capaz de optimizar las características farmacológicas de la clorhexidina, tanto en su tolerancia epitelial como en su acción para prevenir la consolidación de C. albicans en la superficie de la membrana. | spa |
dc.description.abstract | In dental rehabilitation with implants, Guided Bone Regeneration (GBR) is a ridge technique often required for successful bone augmentation through membranes. These devices act a physical barrier facilitating the compartmentalization of cells with potential in osseous regeneration and excluding cells impeding bone formation. Lack of osteo-conducting properties, inflammation, and infection are the most often limitations in GBR, requiring biocidal, antibiotic, and anti-inflammatory support therapies, which can promote dysbiosis and antimicrobial resistance. To optimize the immune-responsive and antifungal properties of GBR-resorbable membranes (collagen), the aim of this work was to study prophylactic additives based in synergistic mixtures of chlorhexidine with terpene-enriched fractions from Lippia alba essential oils. Combinations of the biocide with citral- and limonene-rich fractions showed to increase from twice to eight times, respectively, the anti-Candida albicans performance of chlorhexidine, in terms of minimum inhibitory concentration. As pretreatments on membranes, these mixtures potentiated up to four times the C. albicans-growth inhibitory action of chlorhexidine, on surfaces. On murine macrophage J774A.1 cells, an antagonistic pharmacologic interaction (cytoprotective) was evidenced between phytotherapies and chlorhexidine, causing an increase in twice of the biocidal Cytotoxic Concentration 50 (CC50) and minimizing its toxic effects on cell adhesion, cell membrane, mitochondrial potential, and nuclear integrity. On macrophages, citral-enriched fractions also favor the immune-responsive properties of collagen membranes (alone or in combination with chlorhexidine) increasing the osteogenic TNF-α cytokine while increasing the inhibitory IL-4. Thus, this combined therapy represents a promising platform for the development of a prophylactic (attached to membranes) or therapeutic biocidal solution able of optimizing the pharmacological characteristics of chlorhexidine, both in its epithelium tolerance and in its action to prevent C. albicans consolidation on the membrane surface. Due to their ability to stimulate a regulated inflammatory response, this therapy may also contribute to the role of collagen membranes as bone healing promoting agents. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Investigación en enfermedades Infecciosas | |
dc.description.tableofcontents | Introducción ............................................................................................................................... 20 Marco Referencial ................................................................................................................... 22 Regeneración Ósea Guiada (ROG) ............................................................................................... 22 Complicaciones del Uso de Membranas en ROG......................................................................... 24 Actividad de los Macrófagos en la ROG. ..................................................................................... 25 Plantas Medicinales de Uso Odontológico ................................................................................... 28 Lippia alba. ................................................................................................................................... 29 Quimiotipos. .................................................................................................................................. 30 Limoneno....................................................................................................................................... 33 Citral. ........................................................................................................................................ 34 Óxido Cariofileno. ........................................................................................................................ 34 Clorhexidina .................................................................................................................................. 34 Actividad Antimicrobiana. ............................................................................................................ 35 Efecto Secundarios y Contraindicaciones .................................................................................... 35 Combinaciones de la Clorhexidina con Otros Compuestos. ........................................................ 36 Objetivos ................................................................................................................... 38 Objetivo General ........................................................................................................................... 38 Objetivos Específicos.................................................................................................................... 38 Materiales y Métodos ................................................................................................................... 39 Materiales ...................................................................................................................................... 39 Material Vegetal y Fracciones Enriquecidas de Aceites Esenciales Derivadas de L. alba. ........ 39 Terpenos. ....................................................................................................................................... 40 Clorhexidina. ................................................................................................................................ 40 Membranas de ROG. .................................................................................................................... 40 Línea Celular. ............................................................................................................................... 41 Línea Fúngica. .............................................................................................................................. 41 Métodos ........................................................................................................................................ 41 Composición Química Relativa de los Aceites Esenciales y de sus Fracciones Derivadas de L. alba. ........................................................................................................................................ 41 Evaluación de la Actividad Antifúngica. ...................................................................................... 42 Evaluación de la Actividad Citotóxica. ........................................................................................ 43 Interacciones Farmacológicas Sobre Macrófagos Murinos J774A.1 y C. albicans. ................... 44 Cambios Morfológicos de Macrófagos Murinos J774A.1. ........................................................... 45 Evaluación del Estrés Oxidativo. .................................................................................................. 46 Evaluación de Citoquinas. ............................................................................................................ 46 Ensayo Anti-Proliferativo Sobre Membranas de Colágeno con C. albicans. .............................. 47 Análisis de Datos. ......................................................................................................................... 48 Resultados ................................................................................................................... 49 Composición Química de Fracciones Enriquecidas de Lippia alba ............................................. 49 Curva Crecimiento Candida albicans ........................................................................................... 50 Actividad Antifúngica ................................................................................................................... 51 Actividad Citotóxica ..................................................................................................................... 53 Interacciones Farmacológicas Sobre Macrófagos Murinos J774A.1 y C. albicans ..................... 54 Actividad Anti-Proliferativa Contra C. albicans en Membranas de Colágeno Pre-Tratadas ....... 59 Cambios Morfológicos de Macrófagos y Estrés Oxidativo Sobre Macrófagos Murinos J774A.1 .. ........................................................................................................................................ 61 Evaluación de Citoquinas ............................................................................................................. 65 Discusión ............................................................................................................................. 71 Conclusiones ............................................................................................................................. 88 Recomendaciones ........................................................................................................................ 89 Referencias Bibliográficas ............................................................................................................ 90 | |
dc.format.extent | 110 p | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Santander | |
dc.identifier.local | T 86.22 R832e | |
dc.identifier.reponame | Repositorio Digital Universidad de Santander | |
dc.identifier.repourl | https://repositorio.udes.edu.co/ | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/7843 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Santander | |
dc.publisher.faculty | Facultad Ciencias Médicas y de la Salud | |
dc.publisher.place | Bucaramanga, Colombia | |
dc.publisher.program | Maestría en Investigación en enfermedades Infecciosas | |
dc.relation.references | Abou Neel, E. A., Chrzanowski, W., Salih, V. M., Kim, H. W., & Knowles, J. C. (2014). Tissue engineering in dentistry. Journal of dentistry, 42(8), 915-928. https://doi.org/10.1016/j.jdent.2014.05.008 | |
dc.relation.references | Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456, pp. 544-545). Carol Stream: Allured publishing corporation. | |
dc.relation.references | Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P., Barros, L., & Ferreira, I. C. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & Function, 12(1), 14-29. DOI: 10.1039/D0FO02324H | |
dc.relation.references | Amorim, J. L., Simas, D. L. R., Pinheiro, M. M. G., Moreno, D. S. A., Alviano, C. S., da Silva, A. J. R., & Dias Fernandes, P. (2016). Anti-inflammatory properties and chemical characterization of the essential oils of four citrus species. PloS one, 11(4), e0153643. https://pubmed.ncbi.nlm.nih.gov/27088973/ | |
dc.relation.references | Angelini, P., Tirillini, B., Akhtar, M. S., Dimitriu, L., Bricchi, E., Bertuzzi, G., & Venanzoni, R. (2018). Essential oil with anticancer activity: An overview. Anticancer plants: Natural products and biotechnological implements, 207-231. https://goo.su/OY7hXug | |
dc.relation.references | Araujo, H. C., da Silva, A. C. G., Paião, L. I., Magario, M. K. W., Frasnelli, S. C. T., Oliveira, S. H. P., & Monteiro, D. R. (2020). Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. Journal of Dentistry, 101, 103453. https://doi.org/10.1016/j.jdent.2020.103453 | |
dc.relation.references | Azambuja, C. R., Mattiazzi, J., Riffel, A. P. K., Finamor, I. A., de Oliveira Garcia, L., Heldwein, C. G., ... & Llesuy, S. F. (2011). Effect of the essential oil of Lippia alba on oxidative stress parameters in silver catfish (Rhamdia quelen) subjected to transport. Aquaculture, 319(1-2), 156-161. https://doi.org/10.1016/j.aquaculture.2011.06.002 | |
dc.relation.references | Balga, R., Wetterwald, A., Portenier, J., Dolder, S., Mueller, C., & Hofstetter, W. (2006). Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone, 39(2), 325-335. https://doi.org/10.1016/j.bone.2006.02.056 | |
dc.relation.references | Ballal, N. V., Kundabala, M., Bhat, K. S., Acharya, S., Ballal, M., Kumar, R., & Prakash, P. Y. (2009). Susceptibility of Candida albicans and Enterococcus faecalis to Chitosan, Chlorhexidine gluconate and their combination in vitro. Australian Endodontic Journal, 35(1), 29-33. https://doi.org/10.1111/j.1747-4477.2008.00126.x | |
dc.relation.references | Batohi, N., Lone, S. A., Marimani, M., Wani, M. Y., Al-Bogami, A. S., & Ahmad, A. (2021). citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. Archives of Microbiology, 203(4), 1451-1459. https://doi.org/10.1007/s00203-020-02127-z | |
dc.relation.references | Bartee, B. K. (1995). The use of high-density polytetrafluoroethylene membrane to treat osseous defects: clinical reports. Implant dentistry, 4(1), 21-26. DOI: 10.1097/00008505-199504000-00004 | |
dc.relation.references | Bartold, P. M., Gronthos, S., Ivanovski, S., Fisher, A., & Hutmacher, D. W. (2016). Tissue engineered periodontal products. Journal of periodontal research, 51(1), 1-15. https://doi.org/10.1111/jre.12275 | |
dc.relation.references | Bello, S. A., Peña, J., Estrada, L. E., & Fontanilla, M. R. (2001). Sustitutos de mucosa oral creados mediante ingeniería tisular: una alternativa para la reconstrucción de defectos de mucosa oral. CES odontología, 14(1), 55-64. DOI https://doi.org/10.21615/cesodon | |
dc.relation.references | Benbelaïd, F., Khadir, A., Abdoune, M. A., Bendahou, M., Muselli, A., & Costa, J. (2014). Antimicrobial activity of some essential oils against oral multidrug–resistant Enterococcus faecalis in both planktonic and biofilm state. Asian PaciCIF journal of tropical biomedicine, 4(6), 463-472. https://doi.org/10.12980/APJTB.4.2014C1203 | |
dc.relation.references | Bescos, R., Ashworth, A., Cutler, C. et al., Effects of Chlorhexidine mouthwash on the oral microbiome. Sci Rep 10, 5254 (2020). https://doi.org/10.1038/s41598-020-61912-4 | |
dc.relation.references | Bersan, S. M., Galvão, L. C., Goes, V. F., Sartoratto, A., Figueira, G. M., Rehder, V. L., & Duarte, M. C. (2014). Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC complementary and alternative medicine, 14(1), 451. https://doi.org/10.1186/1472-6882-14-451 | |
dc.relation.references | Bertolini, M., & Dongari-Bagtzoglou, A. (2019). The dysbiosis and inter-kingdom synergy model in oropharyngeal candidiasis, a new perspective in pathogenesis. Journal of Fungi, 5(4), 87. https://doi.org/10.3390/jof5040087 | |
dc.relation.references | Brookes, Z. L., Bescos, R., Belfield, L. A., Ali, K., & Roberts, A. (2020). Current uses of chlorhexidine for management of oral disease: a narrative review. Journal of Dentistry, 103, 103497. https://doi.org/10.1016/j.jdent.2020.103497 | |
dc.relation.references | Buldain, D. C. (2021). Evaluación de combinaciones antimicrobianas/aceite esencial de Melaleuca armillaris Sm. como alternativas terapéuticas para el tratamiento de mastitis bovina por Staphylococcus aureus (Doctoral dissertation, Universidad Nacional de La Plata). https://doi.org/10.35537/10915/117394 | |
dc.relation.references | Bustamante, O. C., Troncos, L. G. P., de Zebrauskas, A. P. P., Leandro, K. C. R., & Sime, C. L. D. C. H. (2020). Antisepticos orales: clorhexidina, fluor y triclosan. Salud & Vida Sipanense, 7(1), 4-16. | |
dc.relation.references | Cajas Barrera, M. C. (2022). Efectos de antibióticos asociados al tratamiento de la enfermedad periimplantaria (Bachelor's thesis, Universidad de Guayaquil. Facultad Piloto de Odontología). http://repositorio.ug.edu.ec/handle/redug/60353 | |
dc.relation.references | Cantón, E., Martín, E., & Espinel-Ingroff, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). Revista Iberoamericana de Micología, 15(1). | |
dc.relation.references | Carvalho, P. M., Macêdo, C. A., Ribeiro, T. F., Silva, A. A., Da Silva, R. E., de Morais, L. P., & Barbosa, R. (2018). Effect of the Lippia alba (Mill.) NE Brown essential oil and its main constituents, citral and limonene, on the tracheal smooth muscle of rats. Biotechnology reports, 17, 31-34. https://doi.org/10.1016/j.btre.2017.12.002 | |
dc.relation.references | Carbonell, J. M., Martín, I. S., Santos, A., Pujol, A., Sanz-Moliner, J. D., & Nart, J. (2014). High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review. International journal of oral and maxillofacial surgery, 43(1), 75-84. https://doi.org/10.1016/j.ijom.2013.05.017 | |
dc.relation.references | Calixto, M. R. (2006). Plantas medicinales utilizadas en odontología (Parte I). Kiru, 3 (2), 80-85. vol. 3, n. 2 https://hdl.handle.net/20.500.12727/1695 | |
dc.relation.references | Chandra, J., Mukherjee, P. K., & Ghannoum, M. A. (2012). Candida biofilms associated with CVC and medical devices. Mycoses, 55, 46-57. https://doi.org/10.1111/j.1439-0507.2011.02149.x | |
dc.relation.references | Chen, Z., Klein, T., Murray, R. Z., Crawford, R., Chang, J., Wu, C., & Xiao, Y. (2016). Osteoimmunomodulation for the development of advanced bone biomaterials. Materials today, 19(6), 304-321. https://doi.org/10.1016/j.mattod.2015.11.004 | |
dc.relation.references | Chi, M., Qi, M., Wang, P., Weir, M. D., Melo, M. A., Sun, X., & Xu, H. H. (2019). Novel Bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms. International journal of molecular sciences, 20(2), 278. https://doi.org/10.3390/ijms20020278 | |
dc.relation.references | Cho, T. J., Gerstenfeld, L. C., & Einhorn, T. A. (2002). Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing. Journal of bone and mineral research, 17(3), 513-520. https://doi.org/10.1359/jbmr.2002.17.3.513 | |
dc.relation.references | Chorianopoulos, N. G., Giaouris, E. D., Skandamis, P. N., Haroutounian, S. A., & Nychas, G. J. (2008). Disinfectant test against monoculture and mixed‐culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid–base sanitizers. Journal of applied microbiology, 104(6), 1586-1596. https://doi.org/10.1111/j.1365-2672.2007.03694.x | |
dc.relation.references | Chou, A. H., LeGeros, R. Z., Chen, Z., & Li, Y. (2007). Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes. Implant dentistry, 16(1), 89-100. doi: 10.1097/ID.0b013e318031224a | |
dc.relation.references | Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. https://doi.org/10.3390/medicines4030058 | |
dc.relation.references | Chu, C., Deng, J., Sun, X., Qu, Y., & Man, Y. (2017). Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives. Tissue Engineering Part B: Reviews, 23(5), 421-435. https://doi.org/10.1089/ten.teb.2016.0463 | |
dc.relation.references | Cieplik, F., Jakubovics, N. S., Buchalla, W., Maisch, T., Hellwig, E., & Al-Ahmad, A. (2019). Resistance toward chlorhexidine in oral bacteria–is there cause for concern?. Frontiers in microbiology, 10, 587. https://doi.org/10.3389/fmicb.2019.00587 | |
dc.relation.references | Cuadros, M. O., de Guevara, E. E. A., Castillo, A. D. M., Castañeda, C. G., Amarís, G. C., & Tofiño-Rivera, A. P. (2020). Essential oils biological activity of the Lippia alba (Verbenaceae) shrub. Revista de Biología Tropical, 68(1). DOI 10.15517/RBT.V68I1.39153 | |
dc.relation.references | de Salud Bucal, S. (2015). ENSAB IV. Situación en Salud Bucal MPS, 19-51. https://goo.su/KxUwRVF | |
dc.relation.references | Díaz Carranza, I. (2020). Actividad Antioxidante in vitro del aceite esencial de las hojas de Laurus nobilis “laurel” cultivada en Cajamarca. http://repositorio.upagu.edu.pe/handle/UPAGU/1255 | |
dc.relation.references | Díaz Ledesma, K. (2005). Determinación de la actividad antibacteriana" in vitro" de Minthostachys mollis Griseb (muña) frente a bacterias orales de importancia estomatológica.Ondontol, 8(2), 3-5. https://goo.su/drnx | |
dc.relation.references | Dimitriou, R., Tsiridis, E., & Giannoudis, P. V. (2005). Current concepts of molecular aspects of bone healing. Injury, 36(12), 1392-1404. https://doi.org/10.1016/j.injury.2005.07.019 | |
dc.relation.references | Do Vale, T. G., Furtado, E. C., Santos Jr, J. G., & Viana, G. S. B. (2002). Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) NE Brown. Phytomedicine, 9(8), 709-714. https://doi.org/10.1078/094471102321621304 | |
dc.relation.references | Elgali, I., Omar, O., Dahlin, C., & Thomsen, P. (2017). Guided bone regeneration: materials and biological mechanisms revisited. European journal of oral sciences, 125(5), 315-337. https://doi.org/10.1111/eos.12364 | |
dc.relation.references | Espinosa Rivero, I. (2007). Actividad antibacteriana del extracto de Tabebuia serratifolia (Tahuari) sobre el Streptococcus mutans. Estudio In vitro (Doctoral dissertation, Tesis de licenciatura en Odontología. Lima: Universidad de San Martín de Porres). | |
dc.relation.references | Fernández Campos, F. (2012). Nanoemulsiones de nistatina para el tratamiento de candidiasis muco-cutáneas. http://hdl.handle.net/2445/34846 | |
dc.relation.references | Gao, S., Liu, G., Li, J., Chen, J., Li, L., Li, Z., & Zhang, S. (2020). Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida species. Frontiers in cellular and infection microbiology, 10, 603858. https://doi.org/10.3389/fcimb.2020.603858 | |
dc.relation.references | García, C. E., & Sánchez, A. S. (2001). Clasificaciones de la OMS sobre discapacidad. Boletín del RPD, 50, 15-30. https://goo.su/z3MWJn | |
dc.relation.references | Garcia, J., Dodge, A., Luepke, P., Wang, H. L., Kapila, Y., & Lin, G. H. (2018). Effect of membrane exposure on guided bone regeneration: A systematic review and meta‐analysis. Clinical oral implants research, 29(3), 328-338. https://doi.org/10.1111/clr.13121 | |
dc.relation.references | Gerstenfeld, L. C., Cullinane, D. M., Barnes, G. L., Graves, D. T., & Einhorn, T. A. (2003A). Fracture healing as a post‐natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of cellular biochemistry, 88(5), 873-884. https://doi.org/10.1002/jcb.10435 | |
dc.relation.references | Gerstenfeld, L. C., Cho, T. J., Kon, T., Aizawa, T., Tsay, A., Fitch, J, & Einhorn, T. A. (2003B). Impaired fracture healing in the absence of TNF‐α signaling: The role of TNF‐α in endochondral cartilage resorption. Journa of Bone and Mineral Research, 18(9), 1584-1592.l https://doi.org/10.1359/jbmr.2003.18.9.1584 | |
dc.relation.references | Ghazal, A. R. A., Idris, G., Hajeer, M. Y., Alawer, K., & Cannon, R. D. (2019). Efficacy of removing Candida albicans from orthodontic acrylic bases: an in vitro study. BMC oral health, 19(1), 1-7. https://doi.org/10.1186/s12903-019-0765-x | |
dc.relation.references | Gilbert, P., & Moore, L. E. (2005). Cationic antiseptics: diversity of action under a common epithet. Journal of applied microbiology, 99(4), 703-715. https://doi.org/10.1111/j.1365-2672.2005.02664.x | |
dc.relation.references | Glamočlija, J., Soković, M., Tešević, V., Linde, G. A., & Colauto, N. B. (2011). Chemical characterization of Lippia alba essential oil: an alternative to control green molds. Brazilian Journal of Microbiology, 42, 1537-1546. | |
dc.relation.references | Gupta, S., Wen, J. J., & Garg, N. J. (2009). Oxidative stress in Chagas disease. Interdisciplinary perspectives on infectious diseases, 2009. https://doi.org/10.1155/2009/190354 | |
dc.relation.references | Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., & von Wright, A. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of agricultural and food chemistry, 46(9), 3590-3595. https://doi.org/10.1021/jf980154m | |
dc.relation.references | Hennebelle, T., Sahpaz, S., Joseph, H., & Bailleul, F. (2008). Ethnopharmacology of Lippia alba. Journal of ethnopharmacology, 116(2), 211-222. https://doi.org/10.1016/j.jep.2007.11.044 | |
dc.relation.references | Hermet, M. (2022). Surfactantes derivados de aminoácidos como potenciales biocidas y potenciadores de penetración de moléculas terapéuticas a través de la piel (Doctoral dissertation, Universidad Nacional de La Plata). | |
dc.relation.references | Igimi, H., Nishimura, M., Kodama, R., & Ide, H. (1974). Studies on the metabolism of d-limonene (p-mentha-1, 8-diene): I. the absorption, distribution and excretion of d-limonene in rats. Xenobiotica, 4(2), 77-84. https://doi.org/10.3109/00498257409049347 | |
dc.relation.references | Jacob, S. A., & Amudha, D. (2017). Guided Tissue Regeneration: A Review. J Dent Health Oral Disord Ther, 6(3), 00197. | |
dc.relation.references | Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. Journal of herbmed pharmacology, 7(1), 1-7. http://herbmedpharmacol.com/Article/jhp-1198 http://eprints.skums.ac.ir/id/eprint/6978 | |
dc.relation.references | Jiménez, W. J. J., Guevara, J. A. Z., Mori, J. R. C., & Santi, W. E. M. (2022). Actividad antioxidante y antimicrobiana del aceite esencial de citrus sinenis, citrus paradisis y citrus reticulata. RECIAMUC, 6(3), 399-407. https://doi.org/10.26820/reciamuc/6.(3).julio.2022.399-407 | |
dc.relation.references | Kampf, G. (2016). Acquired resistance to chlorhexidine–is it time to establish an ‘antiseptic stewardship’initiative? Journal of Hospital Infection, 94(3), 213-227. https://doi.org/10.1016/j.jhin.2016.08.018 | |
dc.relation.references | Karahaliloglu, Z., Ercan, B., Taylor, E. N., Chung, S., Denkbaş, E. B., & Webster, T. J. (2015). Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration. Journal of biomedical nanotechnology, 11(12), 2253-2263. https://doi.org/10.1166/jbn.2015.2106 | |
dc.relation.references | Khoury, Z. H., Vila, T., Puthran, T. R., Sultan, A. S., Montelongo-Jauregui, D., Melo, M. A. S., & Jabra-Rizk, M. A. (2020). The role of Candida albicans secreted polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: In vitro and in vivo studies. Frontiers in microbiology, 11, 307. https://doi.org/10.3389/fmicb.2020.00307 | |
dc.relation.references | Kryvtsova, M. V., Kostenko, Y. Y., & Salamon, I. (2018). Compositions of essential oils with antimicrobial properties against isolates from oral cavities of patients with inflammatory diseases of the periodontium. Regulatory Mechanisms in Biosystems, 9(4), 491-494. https://medicine.dp.ua/index.php/med/article/view/478/502 | |
dc.relation.references | Ku, C. M., & Lin, J. Y. (2013). Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food chemistry, 141(2), 1104-1113. https://doi.org/10.1016/j.foodchem.2013.04.044 | |
dc.relation.references | Kuruvilla, J. R., & Kamath, M. P. (1998). Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. Journal of endodontics, 24(7), 472-476. DOI: 10.1016/s0099-2399(98)80049-6 | |
dc.relation.references | Kuyyakanond, T., & Quesnel, L. B. (1992). The mechanism of action of chlorhexidine. FEMS Microbiology Letters, 100(1-3), 211-215. https://doi.org/10.1111/j.1574-6968.1992.tb14042.x | |
dc.relation.references | Lakis, Z., Mihele, D., Nicorescu, I., Vulturescu, V., & Udeanu, D. I. (2012). The antimicrobial activity of Thymus vulgaris and Origanum syriacum essential oils on Staphylococcus aureus, Streptococcus pneumoniae and Candida albicans. Farmacia, 60(6), 857-865. https://goo.su/HMfroXm | |
dc.relation.references | Lee, S. K., & Lorenzo, J. (2006). Cytokines regulating osteoclast formation and function. Current opinion in rheumatology, 18(4), 411-418. doi: 10.1097/01.bor.0000231911.42666.78 | |
dc.relation.references | Leyva-López, N., Gutiérrez-Grijalva, E. P., Vazquez-Olivo, G., & Heredia, J. B. (2017). Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules, 22(6), 989. https://doi.org/10.3390/molecules22060989 | |
dc.relation.references | Lima Juiz, P. J., Lucchese, A. M., Gambari, R., Piva, R., Penolazzi, L., Di Ciano, M., ... & Avila-Campos, M. J. (2015). Essential oils and isolated compounds from Lippia alba leaves and flowers: Antimicrobial activity and osteoclast apoptosis. International journal of molecular medicine, 35(1), 211-217. https://doi.org/10.3892/ijmm.2014.1995 | |
dc.relation.references | Lim, G., Lin, G. H., Monje, A., Chan, H. L., & Wang, H. L. (2018). Wound healing complications following guided bone regeneration for ridge augmentation: a systematic review and meta-analysis. International Journal of Oral & Maxillofacial Implants, 33(1). | |
dc.relation.references | Linde, G. A., Colauto, N. B., Alberto, E. O., & Gazim, Z. C. (2016). Quimiotipos, extracción, composición y aplicaciones del aceite esencial de Lippia alba. https://doi.org/10.1590/1983-084X/15_037 | |
dc.relation.references | López, M. A., Stashenko, E. E., & Fuentes, J. L. (2011). Chemical composition and antigenotoxic properties of Lippia alba essential oils. Genetics and molecular biology, 34(3), 479-488. https://doi.org/10.1590/S1415-47572011005000030 | |
dc.relation.references | Machado Salamea, M. D. (2013). Estudio in vivo de la eficacia de la fototerapia (Láser Diodo de GaAIAs más sustancia Fotosensibilizante) como coadyuvante de la terapia básica periodontal en el tratamiento de la enfermedad periodontal (Bachelor's thesis, Quito, 2013). http://repositorio.usfq.edu.ec/handle/23000/2629 | |
dc.relation.references | Machado, T. F., Nogueira, N. A. P., Pereira, R. D. C. A., Sousa, C. T. D., & Batista, V. V. (2014). The antimicrobial efficacy of Lippia alba essential oil and its interaction with food ingredients. Brazilian Journal of Microbiology, 45(2), 699-705. https://doi.org/10.1590/S1517-83822014000200045 | |
dc.relation.references | Manconi, M., Petretto, G., D’hallewin, G., Escribano, E., Milia, E., Pinna, R., & Fadda, A. M. (2018). Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids and Surfaces B: Biointerfaces, 171, 115-122. https://doi.org/10.1016/j.colsurfb.2018.07.021 | |
dc.relation.references | McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical microbiology reviews, 12(1), 147-179. https://doi.org/10.1128/CMR.12.1.147 | |
dc.relation.references | Meyer, C., Camponovo, T., Euvrard, E., & Chatelain, B. (2012). Membranes in pre-implantation surgery. Revue de stomatologie et de chirurgie maxillo-faciale, 113(4), 212-230. DOI: 10.1016/j.stomax.2012.06.008 | |
dc.relation.references | Miranda-Cadena, K., Marcos-Arias, C., Perez-Rodriguez, A., Cabello-Beitia, I., Mateo, E., Sevillano, E., & Eraso, E. (2022). In vitro and in vivo anti-Candida activity of citral in combination with fluconazole. Journal of oral microbiology, 14(1), 2045813. https://doi.org/10.1080/20002297.2022.2045813 | |
dc.relation.references | Mombelli, A., Lang, N. P., & Nyman, S. (1993). Isolation of periodontal species after guided tissue regeneration. Journal of periodontology, 64, 1171-1175. https://doi.org/10.1902/jop.1993.64.11s.1171 | |
dc.relation.references | Moreno, É. M., Leal, S. M., Stashenko, E. E., & García, L. T. (2018). Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC complementary and alternative medicine, 18(1), 1-16. https://doi.org/10.1186/s12906-018-2293-7 | |
dc.relation.references | Mountziaris, P. M., & Mikos, A. G. (2008). Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews, 14(2), 179-186. https://doi.org/10.1089/ten.teb.2008.0038 | |
dc.relation.references | Muñoz, J. E., Rossi, D. C., Jabes, D. L., Barbosa, D. A., Cunha, F. F., Nunes, L. R., & Pelleschi Taborda, C. (2020). In Vitro and In Vivo Inhibitory Activity of Limonene against Different Isolates of Candida spp. Journal of Fungi, 6(3), 183. https://doi.org/10.3390/jof6030183 | |
dc.relation.references | Murray, P. J. (2017). Macrophage polarization. Annual review of physiology, 79, 541-566. | |
dc.relation.references | Naglik, J. R., Challacombe, S. J., & Hube, B. (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and molecular biology reviews, 67(3), 400-428. https://doi.org/10.1128/MMBR.67.3.400-428.2003 | |
dc.relation.references | Nam, S., Choi, M., & Cho, Y. (2018). Antimicrobial effect of aroma essential oils on the oral cavity for the prevention and treatment of inflammatory diseases. Biomed. Res, 29, 3850-3852. | |
dc.relation.references | Nowzari, H., London, R., & Slots, J. (1995). The importance of periodontal pathogens in guided periodontal tissue regeneration and guided bone regeneration. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995), 16(10), 1042-1044. PMID: 8603308 | |
dc.relation.references | Nyman, S., & Karring, T. (1979). Regeneration of surgically removed buccal alveolar bone in dogs. Journal of periodontal research, 14(1), 86-92. https://doi.org/10.1111/j.1600-0765.1979.tb00221.x | |
dc.relation.references | Oliveira, T. B., Souza, J. S., Gomes-Filho, I. S., Moura, D., Pereira-Filho, J. N., & Trindade, S. C. (2018). The Use of Lippia in the Treatment of Periodontal Diseases. Journal of Dentistry & Public Health, 9(3), 227-237. | |
dc.relation.references | Owens, J., & Chambers, T. J. (1995, August). Differential regulation of osteoclast formation-interleukin-10 (cytokine synthesis inhibitory factor) suppresses formation of osteoclasts but not macrophages in murine bone-marrow cultures. In Journal Of Bone and Mineral Research (Vol. 10, pp. S220-S220). 238 Main St, Cambridge, Ma 02142: Blackwell Science Publ Inc Cambridge. | |
dc.relation.references | Pemberton, M. N., & Gibson, J. (2012). Chlorhexidine and hypersensitivity reactions in dentistry. British dental journal, 213(11), 547-550. https://doi.org/10.1038/sj.bdj.2012.1086 | |
dc.relation.references | Pérez Zamora, CM, Torres, CA y Nuñez, MB (2018). Actividad antimicrobiana y composición química de aceites esenciales de especies de Verbenaceae que crecen en América del Sur. Moléculas, 23 (3), 544. https://doi.org/10.3390/molecules23030544 | |
dc.relation.references | Periogard (Chlorhexidine Gluconate)- chlorhexidine gluconate rinse Colgate Oral Pharmaceuticals, Inc. https://dailymed.nlm.nih.gov › dailymed › getFile | |
dc.relation.references | Quintero, W. L., Moreno, E. M., Pinto, S. M. L., Sanabria, S. M., Stashenko, E., & García, L. T. (2021). Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complementary Medicine and Therapies, 21(1), 1-16. https://doi.org/10.1186/s12906-021-03347-6 | |
dc.relation.references | Ramírez, J. J. Q., Rugeles, C. I. G., Stashenko, E. E., Hernández, J. C. M., Galvis, M. L. D., & Sánchez, L. T. G. (2021). In vivo protection against chagasic cardiomyopathy progression using trypanocidal fractions from Lippia alba (Verbenaceae) essential oils. Industrial Crops and Products, 167, 113553. https://doi.org/10.1016/j.indcrop.2021.113553 | |
dc.relation.references | Ramos Murguialday, M. (2019). Estudio prospectivo de la regeneración ósea mediante la utilización de injerto compuesto en elevaciones de seno maxilar. http://hdl.handle.net/11201/149187 | |
dc.relation.references | Roberts, WR y Addy, M. (1981). Comparación de las propiedades antibacterianas in vivo e In vitro de los enjuagues bucales antisépticos que contienen clorhexidina, alexidina, cloruro de cetilpiridinio y hexetidina: relevancia para el modo de acción. Revista de Periodoncia Clínica, 8 (4), 295-310. https://doi.org/10.1111/j.1600-051X.1981.tb02040.x | |
dc.relation.references | Rosales-Ibáñez, R., Alvarado-Estrada, K. N., & Ojeda-Gutiérrez, F. (2012). Tissue Engineering in Dentistry. Revista de la Asociación Dental Mexicana, 69(4), 164-167. https://goo.su/qzJuQ | |
dc.relation.references | Rose, M. A., Garcez, T., Savic, S., & Garvey, L. H. (2019). Chlorhexidine allergy in the perioperative setting: a narrative review. British Journal of Anaesthesia, 123(1), e95-e103. https://doi.org/10.1016/j.bja.2019.01.033 | |
dc.relation.references | Sánchez-Hernández, G. R., Villa-Ruano, N., Rubio-Rosas, E., Zarate-Reyes, J. A., Cruz-Durán, R., & Lozoya-Gloria, E. (2018). Chemical constituents and anti-fungal activity of the essential oils from Lantana hirta and Croton ciliatoglandulifer. Revista Latinoamericana de Química, 46(2-3), 17-24. https://goo.su/nfJAL | |
dc.relation.references | Sanchez, M. C., Llama‐Palacios, A., Blanc, V., Leon, R., Herrera, D., & Sanz, M. (2011). Structure, viability and bacterial kinetics of an In vitro biofilm model using six bacteria from the subgingival microbiota. Journal of periodontal research, 46(2), 252-260. https://doi.org/10.1111/j.1600-0765.2010.01341.x | |
dc.relation.references | Santana Neto, M. C., Costa, M. L. V. D. A., Fialho, P. H. D. S., Lopes, G. L. N., Figueiredo, K. A., Pinheiro, I. M., ... & Carvalho, A. L. M. (2020). Development of chlorhexidine digluconate and Lippia sidoides essential oil loaded in microemulsion for disinfection of dental root canals: Substantivity profile and antimicrobial activity. AAPS PharmSciTech, 21(8), 1-11. https://doi.org/10.1208/s12249-020-01842-6 | |
dc.relation.references | S Santos, N. O. D., Pascon, R. C., Vallim, M. A., Figueiredo, C. R., Soares, M. G., Lago, J. H. G., & Sartorelli, P. (2016). Cytotoxic and antimicrobial constituents from the essential oil of Lippia alba (Verbenaceae). Medicines, 3(3), 22. https://doi.org/10.3390/medicines3030022 | |
dc.relation.references | Satthanakul, P., Taweechaisupapong, S., Luengpailin, S., & Khunkitti, W. (2019). The antifungal efficacy of essential oils in combination with chlorhexidine against Candida spp. Songklanakarin Journal of Science and Technology, 41(1), 144-150. https://goo.su/wklUPl | |
dc.relation.references | Schropp, L., Wenzel, A., Kostopoulos, L., & Karring, T. (2003). Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-monthprospective study. International Journal of Periodontics & Restorative Dentistry, 23(4). https://goo.su/mJMqc7e | |
dc.relation.references | Sela, M. N., Steinberg, D., Klinger, A., Krausz, A. A., & Kohavi, D. (1999). Adherence of periodontopathic bacteria to bioabsorbable and non‐absorbable barrier membranes In vitro. Clinical oral implants research, 10(6), 445-452. https://doi.org/10.1034/j.1600-0501.1999.100602.x | |
dc.relation.references | Sela, M. N., Kohavi, D., Krausz, E., Steinberg, D., & Rosen, G. (2003). Enzymatic degradation of collagen‐guided tissue regeneration membranes by periodontal bacteria. Clinical oral implants research, 14(3), 263-268. https://doi.org/10.1034/j.1600-0501.2003.140302.x | |
dc.relation.references | Sela, M. N., Babitski, E., Steinberg, D., Kohavi, D., & Rosen, G. (2009). Degradation of collagen‐guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents. Clinical oral implants research, 20(5), 496-502. https://doi.org/10.1111/j.1600-0501.2008.01678.x | |
dc.relation.references | Soldatos, N. K., Stylianou, P., Koidou, V. P., Angelov, N., Yukna, R., & Romanos, G. E. (2017). Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence International, 48(2). doi: 10.3290/j.qi.a37133 | |
dc.relation.references | Souza, J. G. S., Bertolini, M., Thompson, A., Mansfield, J. M., Grassmann, A. A., Maas, K., & Dongari-Bagtzoglou, A. (2020). Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. The ISME journal, 14(5), 1207-1222. https://doi.org/10.1038/s41396-020-0608-4 | |
dc.relation.references | Shi, C., Song, K., Zhang, X., Sun, Y., Sui, Y., Chen, Y., & Xia, X. (2016). Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. Plos one, 11(7), e0159006. https://doi.org/10.1371/journal.pone.0159006 | |
dc.relation.references | Sun, J. (2007). D-Limonene: safety and clinical applications. Alternative Medicine Review, 12(3), 259. https://goo.su/uqRea | |
dc.relation.references | Strietzel, F. P. (2001). Risiken und Komplikationen der membrangesteuerten Knochenregeneration. Mund-, Kiefer-und Gesichtschirurgie, 5(1), 28-32. https://doi.org/10.1007/s100060000248 | |
dc.relation.references | Stashenko, E. E., Martínez, J. R., Durán, D. C., Córdoba, Y., & Caballero, D. (2014). Estudio comparativo de la composición química y la actividad antioxidante de los aceites esenciales de algunas plantas del género Lippia (Verbenaceae) cultivadas en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38, 89-105. https://doi.org/10.18257/raccefyn.156 | |
dc.relation.references | Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., & Taniguchi, T. (2000). T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature, 408(6812), 600-605 https://doi.org/10.1038/35046102 | |
dc.relation.references | Tartaglia, G. M., Tadakamadla, S. K., Connelly, S. T., Sforza, C., & Martín, C. (2019). Adverse events associated with home use of mouthrinses: a systematic review. Therapeutic advances in drug safety, 10, 2042098619854881. https://doi.org/10.1177/2042098619854881 | |
dc.relation.references | Thakre, A., Zore, G., Kodgire, S., Kazi, R., Mulange, S., Patil, R., & Karuppayil, S. M. (2018). Limonene inhibits Candida albicans growth by inducing apoptosis. Medical mycology, 56(5), 565-578. https://doi.org/10.1093/mmy/myx074 | |
dc.relation.references | Thaweboon, S., & Thaweboon, B. (2009). In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. https://goo.su/ePc6 | |
dc.relation.references | Thomas, M. V., & Puleo, D. A. (2011). Infection, inflammation, and bone regeneration: a paradoxical relationship. Journal of dental research, 90(9), 1052-1061. https://doi.org/10.1177/0022034510393967 | |
dc.relation.references | Van Swaaij, B. W., Van der Weijden, G. A., Bakker, E. W., Graziani, F., & Slot, D. E. (2020). Does chlorhexidine mouthwash, with an anti‐discoloration system, reduce tooth surface discoloration without losing its efficacy? A systematic review and meta‐analysis. International journal of dental hygiene, 18(1), 27-43. https://doi.org/10.1111/idh.12402 | |
dc.relation.references | Vásquez Carreño, D. R. (2012). El orégano de monte (Lippia origanoides) del Alto Patía: efecto del método de obtención de sus extractos sobre la composición y la actividad antioxidante de los mismos. Departamento de Química. https://repositorio.unal.edu.co/handle/unal/11580 | |
dc.relation.references | Vieira, J. N., Gonçalves, C. L., Villarreal, J. P. V., Gonçalves, V. M., Lund, R. G., Freitag, R. A., & Nascente, P. S. (2019). Chemical composition of essential oils from the apiaceae family, cytotoxicity, and their antifungal activity In vitro against Candida species from oral cavity. Brazilian Journal of Biology, 79(3), 432-437. https://doi.org/10.1590/1519-6984.182206 | |
dc.relation.references | Waasdorp, J., & Feldman, S. (2013). Bone regeneration around immediate implants utilizing a dense polytetrafluoroethylene membrane without primary closure: a report of 3 cases. Journal of Oral Implantology, 39(3), 355-361. https://doi.org/10.1563/AAID-JOI-D-10-00128 | |
dc.relation.references | Wani, M. Y., Ahmad, A., Aqlan, F. M., & Al-Bogami, A. S. (2021). citral derivative activates cell cycle arrest and apoptosis signaling pathways in Candida albicans by generating oxidative stress. Bioorganic Chemistry, 115, 105260. https://doi.org/10.1016/j.bioorg.2021.105260 | |
dc.relation.references | Wessing, B., Lettner, S., & Zechner, W. (2018). Guided bone regeneration with collagen membranes and particulate graft materials: a systematic review and meta-analysis. Int J Oral Maxillofac Implants, 33(1), 87-100. doi: 10.11607/jomi.5461 | |
dc.relation.references | Yoshinari, N., Tohya, T., Mori, A., Koide, M., Kawase, H., Takada, T., ... & Noguchi, T. (1998). Inflammatory cell population and bacterial contamination of membranes used for guided tissue regenerative procedures. Journal of periodontology, 69(4), 460-469. https://doi.org/10.1902/jop.1998.69.4.460 | |
dc.relation.references | Yu, L., Yan, J., & Sun, Z. (2017). D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Molecular medicine reports, 15(4), 2339-2346. https://doi.org/10.3892/mmr.2017.6241 | |
dc.relation.references | Zainol, S. N., Said, S. M., Abidin, Z. Z., Azizan, N., Majid, F. A. A., & Jantan, I. (2017). Synergistic benefit of Eugenia caryophyllata L. and Cinnamomum zeylanicum Blume essential oils against oral pathogenic bacteria. Chemical Engineering Transactions, 56, 1429-1434. DOI:10.3303/CET1756239 | |
dc.relation.references | Zucchelli, G., Sforza, N. M., Clauser, C., Cesari, C., & De Sanctis, M. (1999). Topical and systemic antimicrobial therapy in guided tissue regeneration. Journal of periodontology, 70(3), 239-247. https://doi.org/10.1902/jop.1999.70.3.239 | |
dc.rights | Derechos Reservados - Universidad de Santander, 2022 | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Regeneración ósea guiada | spa |
dc.subject.proposal | Inmune-respuesta | spa |
dc.subject.proposal | Candida albicans | other |
dc.subject.proposal | Clorhexidina | other |
dc.subject.proposal | Lippia alba | other |
dc.subject.proposal | Guided bone regeneration | eng |
dc.subject.proposal | Immuno-responsive | eng |
dc.title | Anti-Candida albicans y Antiinflamatorio In vitro de Mezclas Optimizadas de Lippia alba Aplicadas Sobre Membranas de Regeneración Ósea Guiada (ROG) | spa |
dc.title.translated | Anti-Candida albicans and Anti-Inflammatory Effect in vitro of Optimized Mixtures of Lippia alba Applied on Guided Bone Regeneration Membranes (GBR) | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_71e4c1898caa6e32 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/submittedVersion | |
dcterms.audience | Todas las Audiencias | spa |
dspace.entity.type | Publication |
Archivos
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 59 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: