Please use this identifier to cite or link to this item: https://repositorio.udes.edu.co/handle/001/4356
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZafra, Germanspa
dc.contributor.authorCáceres Villamizar. Camila Andreaspa
dc.date.accessioned2020-01-23T20:48:52Zspa
dc.date.available2020-01-23T20:48:52Zspa
dc.date.issued2019-03-13spa
dc.identifier.urihttps://repositorio.udes.edu.co/handle/001/4356spa
dc.description64 pspa
dc.description.abstractEl presente estudio tuvo como objetivo determinar la expresión diferencial de enzimas secretadas por una cepa lipolítica de C. palmioleophila durante la degradación del aceite de palma. La caracterización de las proteínas fue realizada en diferentes intervalos de tiempo, por medio de un estudio descriptivo experimental con técnicas moleculares como la electroforesis de proteínas SDS-PAGE y electroforesis en 2D. Se encontró que la mayor expresión de perfiles proteicos tanto intracelulares como extracelulares de la cepa SACL-11 de Candida palmioleophila se presentó a las 48 horas de exposición al aceite de palma. El perfil proteico intracelular estuvo conformado por nueve bandas proteicas diferentes con un rango de peso molecular desde los 18.7 hasta los 216.5 KDa, dentro de las cuales las proteínas extracelulares con pesos moleculares de 52.9 KDa y 45.9 KDa podrían corresponder a lipasas y/o esterasas encargadas del proceso de biotransformación del aceite de palma. Además, una banda de 49.2 KDa presentó similitud con las lipasas LIP4 y LIP8 descritas previamente para Candida albicans. En cuanto a los perfiles bidimensionales, se observó una mayor cantidad de spots para las proteínas extracelulares en comparación con las intracelulares. El estudio demostró que en efecto existen diferencias entre los perfiles proteicos de las enzimas extracelulares secretadas por Candida palmioleophila SACL-11 a través del tiempo, especialmente en la cantidad de bandas/spots expresados, en su peso molecular y punto isoeléctrico durante la degradación del aceite de palma.spa
dc.description.abstractThe objective of the present study was to determine the differential expression of enzymes secreted by a lipolytic strain of C. palmioleophila during the degradation of palm oil. The characterization of the proteins was carried out in different time intervals, by means of an experimental descriptive study with molecular techniques such as SDS-PAGE and 2D electrophoresis. The highest expression of both intracellular and extracellular protein profiles of the SACL-11 strain of Candida palmioleophila occurred 48 hours after exposure to palm oil. The intracellular protein profile consisted of nine different bands with a molecular weight range from 18.7 KDa to 216.5 KDa, within which extracellular proteins with molecular weights of 52.9 KDa and 45.9 KDa could correspond to lipases and / or esterases involved in palm oil biotransformation. In addition, a 49.2 KDa band resembled LIP4 and LIP8 lipases described previously in Candida albicans. Regarding the two-dimensional profiles, a higher number of spots was observed for intracellular proteins compared to extracellular ones. The study showed that there are differences between the protein profiles of the extracellular enzymes secreted by Candida palmioleophila SACL-11 over time, especially in the number of bands / spots expressed, in their molecular weight and isoelectric point during the degradation of palm oil.eng
dc.description.tableofcontents1. INTRODUCCIÓN ........................................................................................................ 12 2. PLANTEAMIENTO DEL PROBLEMA ..................................................................... 16 3. JUSTIFICACIÓN.......................................................................................................... 18 4. PREGUNTA DE INVESTIGACIÓN ........................................................................... 20 5. HIPÓTESIS ................................................................................................................... 21 6. MARCO TEÓRICO ...................................................................................................... 22 6.1. Grasas y aceites .......................................................................................................... 22 6.2 Aceite de palma .......................................................................................................... 23 6.3. Contaminación ambiental por grasas y aceites .......................................................... 25 6.4. Degradación biológica de grasas y aceites................................................................. 26 6.5. Candida palmioleophila ............................................................................................ 27 6.6. Lipasas ....................................................................................................................... 29 6.6.1. Lipasas producidas por el género Candida spp. .................................................. 32 7. ANTECENDENTES ..................................................................................................... 36 8. OBJETIVOS.................................................................................................................. 40 8.1 General ........................................................................................................................ 40 8.2 Específicos .................................................................................................................. 40 9. METODOLOGÍA ......................................................................................................... 41 9.1 Tipo de estudio. ........................................................................................................... 41 9.2 Material Biológico. ..................................................................................................... 41 9.3 Reactivación del Candida palmioleophila. ................................................................. 41 9.4 Cultivo de Candida palmioleophila en presencia de aceite de palma. ....................... 42 9.5 Separación de proteínas extracelulares. ...................................................................... 42 9.5.1 Obtención de proteínas intracelulares. ................................................................. 43 9.6 Electroforesis de proteínas SDS-PAGE. ..................................................................... 43 9.7 Isoelectroenfoque y electroforesis en 2D. ................................................................... 44 9.8 Determinación de la variabilidad de los perfiles proteicos ......................................... 45 10. RESULTADOS Y DISCUSIÓN ............................................................................... 46 10.1 Cultivo de C. palmioleophila en presencia de aceite de palma ................................ 46 10.2 Determinación de variabilidad de perfiles proteicos SDS-PAGE ............................ 46 10.3 Caracterización de proteínas lipolíticas por 2D-EF .................................................. 51 11. CONCLUSIONES ..................................................................................................... 56 12. RECOMENDACIONES ........................................................................................... 58 13. BIBLIOGRAFÍA ....................................................................................................... 59spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherBucaramanga : Universidad de Santander, 2019spa
dc.rightsDerechos Reservados - Universidad de Santander, 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleExpresión diferencial de proteínas secretadas por candida palmioleophila durante la degradación de aceite de palmaspa
dc.typeTrabajo de grado - Pregradospa
dc.description.versionEj. 1spa
dc.identifier.localT 33. 19 C112espa
dc.relation.referencesAgualimpia, B., Otero, J. V., & Zafra, G. (2013). Evaluation of Native Microorganisms with Potential for the Degradation of Oil and Grease in Palm Oil Refinery Effluents. Biotecnología Aplicada, 33(1), 1–12. Retrieved from http://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=68552spa
dc.relation.referencesBenjamin, S., & Pandey, A. (1998, December 18). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast. Wiley-Blackwell. https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-Kspa
dc.relation.referencesBenjamin, S., & Pandey, A. (2001). Isolation and characterization of three distinct forms of lipases from candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 44(2), 213–221. https://doi.org/10.1590/S1516-89132001000200016spa
dc.relation.referencesBio-Rad Laboratories. PROTEAN i12 IEF System Manual (2014).spa
dc.relation.referencesBrandt, M. E., & Lockhart, S. R. (2012). Recent taxonomic developments with candida and other opportunistic yeasts. Current Fungal Infection Reports, 6(3), 170–177. https://doi.org/10.1007/s12281-012-0094-xspa
dc.relation.referencesCárdenas, A. G. (2016). Oil Palm Agro-industry in America. Revista Palmas, 37, 215–228. Retrieved from http://web.fedepalma.org/sites/default/files/files/Fedepalma/Memorias de la XVIII Conferencia Internacional sobre Palma de aceite/M_3_3_ La agroindustria en America.pdfspa
dc.relation.referencesCongreso de Colombia, E. (1996). Ley 253 de 1996, (enero 9), 1–54. Retrieved from http://ambientebogota.gov.co/documents/24732/3901795/Ley_253.pdfspa
dc.relation.referencesDe León, U., & Bejega García, V. (2015). Aplicación de lipasas microbianas para la producción de biocombustibles similares al biodiésel que integran la glicerina en forma de monoglicérido. Universidad de Cordoba.spa
dc.relation.referencesDiez, A. E. A., & Sandoval, L. M. C. (2012). Producción biotecnológica de lipasas microbianas, una alternativa sostenible para la utilización de residuos agroindustriales. Vitae, 19(3), 244–247. Retrieved from http://www.redalyc.org/html/1698/169825291001/spa
dc.relation.referencesFacio, M. L., Madalena, L., Fraind, S., Alejandre, M., Bresciani, P., & Pizzolato, M. (2013). Electroforesis bidimensional en orina : una alternativa para el laboratorio clínico *. Acta Bioquímica Clínica Latinoamericana, 47(1), 37–46. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572013000100006spa
dc.relation.referencesFernando de la Cuesta Marina. (2010). Estudio del perfil proteico de tejido y secretoma de la arteria coronaria humana en la enfermedad aterosclerótica. Universidad Complutense de Madrid. Retrieved from https://core.ac.uk/download/pdf/19714986.pdfspa
dc.relation.referencesFiorini, A., Rosado, F. R., Bettega, E. M. da S., Melo, K. C. S., Kukolj, C., Bonfim-Mendonça, P. de S., … Svidzinski, T. I. E. (2016). Candida Albicans protein profile changes in response to the butanolic extract of Sapindus Saponaria L. Revista Do Instituto de Medicina Tropical de Sao Paulo, 58(0). https://doi.org/10.1590/S1678-9946201658025spa
dc.relation.referencesFu, Y., Ibrahim, A. S., Fonzi, W., Zhou, X., Ramos, C. F., & Ghannoum, M. A. (1997). Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology, 143(2), 331–340. https://doi.org/10.1099/00221287-143-2-331spa
dc.relation.referencesGonzález-Bacerio, J., Rodríguez Hernández, J., & del Monte Martínez, A. (2010). Lipases: enzymes with potential for the development of immobilized biocatalysts by interfacial adsorption. Revista Colombiana de Biotecnología, 12(1), 113–140. Retrieved from http://www.redalyc.org/html/776/77617786013/spa
dc.relation.referencesHøegh, I., Patkar, S., Halkier, T., & Hansen, M. T. (1995). Two lipases from Candida antarctica : cloning and expression in Aspergillus oryzae. Canadian Journal of Botany, 73(S1), 869–875. https://doi.org/10.1139/b95-333spa
dc.relation.referencesHube, B., Stehr, F., Bossenz, M., Mazur, A., Kretschmar, M., & Schäfer, W. (2000). Secreted lipases of Candida albicans: Cloning, characterisation and expression analysis of a new gene family with at least ten members. Archives of Microbiology, 174(5), 362–374. https://doi.org/10.1007/s002030000218spa
dc.relation.referencesJafari, N., Kasra-Kermanshahi, R., & Reaz Soudi, M. (2013). Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iranian Journal of Microbiology, 5(4), 434–440. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25848518spa
dc.relation.referencesJensen, R. H., & Arendrup, M. C. (2011). Candida palmioleophila: Characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. Journal of Clinical Microbiology, 49(2), 549–556. https://doi.org/10.1128/JCM.02071-10spa
dc.relation.referencesLee, G. C., Tang, S. J., Sun, K. H., & Shaw, J. F. (1999). Analysis of the gene family encoding lipases in Candida rugosa by competitive reverse transcription-PCR. Applied and Environmental Microbiology, 65(9), 3888–3895. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10473391spa
dc.relation.referencesLi, Z., Wrenn, B. A., & Venosa, A. D. (2005). Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation, 16(4), 341–352. https://doi.org/10.1007/s10532-004-2057-6spa
dc.relation.referencesM., S. M. R., & C., D. M. M. (2009). Análisis de las propiedades del aceite de palma en el desarrollo de su industria. Revista Palmas, 30(2), 11–24. Retrieved from http://publicaciones.fedepalma.org/index.php/palmas/article/view/1432spa
dc.relation.referencesMaddelainne, H. S. (2014). Lipidos: Caracteristicas Principales Y Su Metabolismo. Revista de Actualización Clínica 2014, 41, 2142–2145. Retrieved from http://www.revistasbolivianas.org.bo/pdf/raci/v41/v41_a04.pdfspa
dc.relation.referencesMujica, C. (2010). EVOLUCIÓN DEL SECTOR PALMICULTOR. Retrieved from http://www.udi.edu.co/images/investigaciones/publicaciones/libros/porter/08/Libro-EvoluciondelSectorPalmicultor.pdfspa
dc.relation.referencesNakase, Takashi; Itoh, Mutsumi; Suzuki, Motofumi; Komagata, Kazuo; Kodama, T. (1988). Candida palmioleophila sp. nov., a yeast capable of assimilating crude palm oil, formerly identified as Torulopsis candida. Journal of General Applied Microbiology, 498(6), 493–497. https://doi.org/10.2323/jgam.34.493spa
dc.relation.referencesOkino-Delgado, C. H., Do Prado, D. Z., Facanali, R., Marques, M. M. O., Nascimento, A. S., Fernandes, C. J. da C., … Fleuri, L. F. (2017). Bioremediation of cooking oil waste using lipases from wastes. PLoS ONE, 12(10), e0186246. https://doi.org/10.1371/journal.pone.0186246spa
dc.relation.referencesPanreac Quimica S.A. (2014). Aceites y grasas. Reverté. Retrieved from https://books.google.es/books?hl=es&lr=&id=xFjGDCmLuKQC&oi=fnd&pg=PA3&dq=definición+de+grasas+y+aceites&ots=HzGKqM0RS1&sig=9vHgSTpVDsMusJWvAjyhFB_6fdA#v=onepage&q=definición de grasas y aceites&f=falsespa
dc.relation.referencesParés I. Farrás, R. (1997). Bioquímica de los microorganismos. Reverté. Retrieved from https://books.google.es/books?hl=es&lr=&id=eHK7eHXBRk4C&oi=fnd&pg=PR5&dq=ciclo+de+krebs+bioquimica&ots=e2IbU47qHC&sig=2xvg40VMXXrQ1cU7KfGFTbyzU_I#v=onepage&q=ciclo de krebs bioquimica&f=falsespa
dc.relation.referencesPark, M., Do, E., & Jung, W. H. (2013, June). Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology. Korean Society of Mycology. https://doi.org/10.5941/MYCO.2013.41.2.67spa
dc.relation.referencesRincón, L. (2016). ANÁLISIS DIFERENCIAL DE PERFILES PROTEICOS DE Candida palmioleophila CON ACTIVIDAD DEGRADADORA DE GRASAS Y ACEITES BAJO DIFERENTES CONDICIONES DE CRECIMIENTO. Universidad de Santander.spa
dc.relation.referencesRincón, L. J., Agualimpia, B., & Zafra, G. (2018). Differential protein profiles of the lipolytic yeast Candida palmioleophila under different growth conditions. CHEMICAL ENGINEERING TRANSACTIONS, 64. https://doi.org/10.3303/CET1864058spa
dc.relation.referencesRodriguez-mateus, Z., Agualimpia, B., & Zafra, G. (2016). Isolation and Molecular Characterization of Microorganisms with Potential for the Degradation of Oil and Grease from Palm Oil Refinery Wastes. CHEMICAL ENGINEERING TRANSACTIONS, 49, 517–522. https://doi.org/10.3303/CET1649087spa
dc.relation.referencesRodríguez-mateus, Z., Pacheco, K. V., & Zafra, G. (2018). Molecular detection and characterization of novel lipase genes of the lipolytic yeast Candida palmioleophila. CHEMICAL ENGINEERING TRANSACTIONS, 64. https://doi.org/10.3303/CET1864059spa
dc.relation.referencesRotticci-Mulder, J. C., Gustavsson, M., Holmquist, M., Hult, K., & Martinelle, M. (2001). Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expression and Purification, 21(3), 386–392. https://doi.org/10.1006/prep.2000.1387spa
dc.relation.referencesRuiz Aguilar, G., Fernández Sánchez, J. M., & Rodríguez Vázquez, R. (2001). Residuos peligrosos : grave riesgo ambiental. Avance y Perspectiva, 20, 151–158. Retrieved from http://www.ingenieroambiental.com/4014/grave.pdfspa
dc.relation.referencesSharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal. Hindawi Limited. https://doi.org/10.1155/2014/625258spa
dc.relation.referencesSibirny, A. A. (2016, June 1). Yeast peroxisomes: Structure, functions and biotechnological opportunities. (J. Nielsen, Ed.), FEMS Yeast Research. Oxford University Press. https://doi.org/10.1093/femsyr/fow038spa
dc.relation.referencesSoleimaninanadegani, M., & Manshad, S. (2014). Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms. International Scholarly Research Notices, 2014, 1–8. https://doi.org/10.1155/2014/727049spa
dc.relation.referencesVakhlu, J., & Kour, A. (2006, January 15). Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology. https://doi.org/10.2225/vol9-issue1-fulltext-9spa
dc.relation.referencesWang, J., Mahmood, Q., Qiu, J. P., Li, Y. S., Chang, Y. S., Chi, L. N., & Li, X. D. (2015). Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent. BioMed Research International, 2015, 617861. https://doi.org/10.1155/2015/617861spa
dc.relation.referencesZhang, T., Lei, J., Yang, H., Xu, K., Wang, R., & Zhang, Z. (2011). An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast, 28(11), 795–798. https://doi.org/10.1002/yea.1905spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalCandida palmioleophilaspa
dc.subject.proposalLipasasspa
dc.subject.proposalElectroforesis bidimensionalspa
dc.subject.proposalGrasas y aceitesspa
dc.subject.proposalLipasesspa
dc.subject.proposalTwo-dimensional electrophoresisspa
dc.subject.proposalFatsspa
dc.subject.proposalOilsspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.contributor.educationalvalidatorValdivieso Quintero, Wilfredospa
dc.description.degreelevelPregradospa
dc.description.degreenameMicrobiólogo Industrialspa
dc.publisher.facultyFacultad de Ciencias Exactas, Naturales y Agropecuariasspa
dc.publisher.programMicrobiología Industrialspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Appears in Collections:AGBA. Trabajos de grado



This item is licensed under a Creative Commons License Creative Commons