Please use this identifier to cite or link to this item: https://repositorio.udes.edu.co/handle/001/4459
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFarfán García, Ana Elvira-
dc.contributor.authorSánchez Sánchez, Ricardo-
dc.contributor.authorMontagut Paredes, Luis Alberto-
dc.date.accessioned2020-02-12T21:31:09Z-
dc.date.available2020-02-12T21:31:09Z-
dc.date.issued2019-06-21-
dc.identifier.urihttps://repositorio.udes.edu.co/handle/001/4459-
dc.description71 pspa
dc.description.abstractLa resistencia bacteriana es un grave problema en la actualidad. El aislamiento de cepas resistentes a ciprofloxacina y ácido nalidíxico es una de las repercusiones clínicas del tratamiento empírico inadecuado ante infecciones graves. Objetivo: Determinar la presencia del gen mdfA en cepas de E. coli patógenas y comensales con patrones fenotípicos a ciprofloxacina y ácido nalidíxico obtenidas en muestras fecales de una población pediátrica de la zona de Bucaramanga y su área metropolitana. Metodología: Estudio descriptivo para la identificación y análisis de mutaciones del gen mdfA en cepas de E. coli. Resultados: En este estudio el gen mdfA se identificó en 64 cepas E. coli patógenas y comensales de una población pediátrica mediante PCR convencional. El producto de PCR de 9 cepas se seleccionó para el análisis de las secuencias forward y reverse las cuales se asociaron a los siguientes genomas cromosómicos de E. coli Z1002, PSUO2, FORC_044, FAM21845, E62 y ATO1. Posteriormente se realizó una búsqueda In Silico de proteínas relacionadas con resistencia antibiótica mediada por bombas de eflujo ubicadas en estos genomas. De las 43 proteínas obtenidas se utilizaron sus secuencias de aminoácidos completos para el análisis filogenético. Con el análisis se evidenció el alineamiento de dos proteínas homólogas ASL30596.1 y ARD54462.1 con la proteína de tipo salvaje WP_116923934.1. Estas proteínas compartieron una identidad de secuencia del 41.44% y 41.18% respectivamente y un grado de similitud del 0.41% en ambas. Las mutaciones más significativas de estas dos proteínas se analizaron mediante programas bioinformáticos que sugirieron que los patrones fenotípicos a ciprofloxacina y ácido nalidíxico probablemente, no estaban relacionados con el funcionamiento de la bomba de eflujo MdfA. Conclusión: Existe la posibilidad de que la presencia del gen mdfA no estuviera relacionada con los patrones fenotípicos específicos a ciprofloxacina y ácido nalidíxico.spa
dc.description.tableofcontentsINTRODUCCIÓN 14 1. PLANTEAMIENTO DEL PROBLEMA 16 2. JUSTIFICACIÓN 19 3. OBJETIVOS 21 3.1 OBJETIVO GENERAL 21 3.2 OBJETIVOS ESPECÍFICOS 21 4. MARCO REFERENCIAL 22 4.1 MARCO CONCEPTUAL 22 4.1.1 Escherichia coli 22 4.1.1.1 Biología, familia y taxonomía 22 4.1.1.2 Factores de virulencia 22 4.1.2 Patogenia y manifestaciones clínicas 23 4.1.2.1 ETEC. 23 4.1.2.2 EHEC. 25 4.1.2.3 EIEC. 26 4.1.2.4 EPEC 26 4.1.2.5 EAEC. 27 4.1.2.6 DAEC 28 4.1.2.7 E. coli extraintestinal (ExPEC3). 30 4.1.3 Transmisión 31 4.1.4 Panorama global de la resistencia a los antimicrobianos 32 4.1.4.1 Resistencia a quinolonas y fluoroquinolonas en Colombia 34 4.1.5 Historia de la resistencia a los antimicrobianos 35 4.1.6 Mecanismos de resistencia a los antimicrobianos 36 4.1.6.1 Mecanismos de resistencia a los aminoglucósidos 36 4.1.6.2 Mecanismos de resistencia a los carbapenémicos 36 4.1.6.3 Mecanismos de resistencia a los glucopéptidos 36 4.1.6.4 Mecanismo de resistencia a los macrólidos 36 4.1.6.5 Mecanismo de resistencia a las penicilinas 37 4.1.6.6 Mecanismo de resistencia a las rifamicinas. 37 4.1.6.7 Mecanismo de resistencia a las sulfonamidas 37 4.1.6.8 Mecanismo de resistencia a las tetraciclinas 37 4.1.6.9 Mecanismo de resistencia a las quinolonas 38 4.1.7 Bombas de eflujo 39 4.1.7.1 Bomba de eflujo MdfA 39 4.2 ESTADO DEL ARTE 42 5. METODOLOGÍA 47 5.1 TIPO DE ESTUDIO 47 5.2 PROCEDENCIA DE LOS AISLADOS CLÍNICOS 47 5.3 EXTRACCIÓN DEL ADN 47 5.4 PCR SIMPLE PARA LA DETECCIÓN DEL GEN mdfA. 48 5.5 ELECTROFORESIS 49 5.6 SECUENCIACIÓN 49 5.7 ANÁLISIS DE MUTACIONES 49 6. RESULTADOS 51 7. DISCUSIÓN 58 8. CONCLUSIONES 61 9. RECOMENDACIONES 62 BIBLIOGRAFÍA 63 ANEXOS 70spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherBucaramanga : Universidad de Santander, 2019spa
dc.rightsDerechos Reservados - Universidad de Santander, 2019spa
dc.titleIdentificación del gen mdfA de bomba de eflujo en aislamientos de Escherichia coli intestinales en una población pediátrica de Bucaramanga y su área metropolitanaspa
dc.typeTrabajo de grado - Pregradospa
dcterms.bibliographicCitationRoca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015;6:22–9.spa
dcterms.bibliographicCitationGrundmann H. Towards a global antibiotic resistance surveillance system: a primer for a roadmap. Ups J Med Sci. 2014;119(2):87–95.spa
dcterms.bibliographicCitationHaney EF, Hancoock RE. Peptide design for antimicrobial and inmunomodulatory applications. Biopolymers. 2013;100(6):572-583.spa
dcterms.bibliographicCitationKanafani ZA, Mehio-Sibai A, Araj GF, Kanaan M, Kanj SS. Epidemiology and risk factors for extended-spectrum beta-lactamase-producing organisms: A case-control study at a tertiary care center in Lebanon. Am J Infect Control. 2005;33(6):326-332.spa
dcterms.bibliographicCitationFinley RL, Collignon P, Larsson DG, McEwen SA, Li XZ, Gaze WH, et al. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis. 2013;57(5):704-710.spa
dcterms.bibliographicCitationBerglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol. 2015;5(1):1-10.spa
dcterms.bibliographicCitationTacão M, Moura A, Correia A, Henriques I. Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res. 2013;48:100-107.spa
dcterms.bibliographicCitationMartinez-Martinez L, Calvo J. Desarrollo de las resistencias a los antibióticos: causas, consecuencias y su importancia para la salud pública. Enferm Infecc Microbiol Clin. 2010;28(4)4-9.spa
dcterms.bibliographicCitationAmerican Institute of Biological Sciences [Internet]. S. KARDAR; 2005. Antibiotic Resistance: New Approaches to a Historical Problem. [Consultado 30 mayo de 2018]. Disponible en: http://www.actionbio-science.org/newfrontiers/kardar.htmlspa
dcterms.bibliographicCitationOrganización Mundial de la Salud [Internet]. OMS; 2018. Resistencia a los antimicrobianos. [Consultado 6 de octubre de 2018]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antimicrobianosspa
dcterms.bibliographicCitationWilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12(1):35-48spa
dcterms.bibliographicCitationWright GD. The Origins of Antibiotic Resistance. Handb Exp Pharmacol. 2012;211:13-30.spa
dcterms.bibliographicCitationSigal N, Vardy E, Molshanski-Mor S, Eitan A, Pilpel Y, Schuldiner S, et al. 3D model of the Escherichia coli multidrug transporter MdfA reveals an essential membrane-embedded positive charge. Biochemistry. 2005;44(45):14870-14880.spa
dcterms.bibliographicCitationLewinson O, Adler J, Poelarends GJ, Mazurkiewicz P, Driessen AJ, Bibi E. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc Natl Acad Sci USA. 2003;100(4):1667-1672.spa
dcterms.bibliographicCitationPérez C, Gómez-Duarte OG, Arias ML. Diarrheagenic Escherichia coli in children from Costa Rica. Am J Trop Med Hyg. 2010;83(2):292-297.spa
dcterms.bibliographicCitationEslava C, Navarro-García F, Czeczulin JR, Henderson IR, Cravioto A, Nataro JP. Pet an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infect Immun.1998;66(7):3155-3163.spa
dcterms.bibliographicCitationGuerrero PP, Sánchez FG, Saborido DG, Lozano IG. Infecciones por enterobacterias. Med. 2014;11(55):3276-3282.spa
dcterms.bibliographicCitationPrice LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, et al. The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio. 2013;4(6):00377–413.spa
dcterms.bibliographicCitationBush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011;9(12):894-896.spa
dcterms.bibliographicCitationWHO [Internet]. France: 2014. Antimicrobial Resistance Global Report On Surveillance. [Consultado 11 febrero de 2019]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessionid=A3F71C59F116200A9BBFE8AC06C7C7D2?sequence=1.spa
dcterms.bibliographicCitationHart CA, Kariuki S. Antimicrobial resistance in developing countries. BMJ. 1998;317(7159):647-650.spa
dcterms.bibliographicCitationOPS. Informe Anual de la Red de Monitoreo/Vigilancia de la Resistencia a los Antibióticos y de Infecciones Asociadas a la Atención de la Salud – 2014. Rev. patol. Trop. [Internet]. 2014. [Consultado 24 mayo de 2018]; 43(2). Disponible en: https://www.paho.org/hq/dmdocuments/2017/2014-cha-informe-anual-relavra.pdf.spa
dcterms.bibliographicCitationInstituto Nacional de Salud (INS) [Internet]. Bogotá (Colombia): INS; 2017. Resultados de la Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2017. [Consultado mayo 20 de 2019]. Disponible en: https://www.ins.gov.co/buscadoreventos/Informacin%20de%20laboratorio/Informe%20Vigilancia%20por%20Laboratorio%20Resistencia%20Antimicrobiana%20y%20Whonet%20IAAS%202017.pdfspa
dcterms.bibliographicCitationMontezzi LF, Campana EH, Corrêaa LL, Justo LH, Paschoal RP, da Silva IL, et al. Ocurrence of carbapenemase-producing bacteria in coastal recreational waters. Int J Antimicrob Agents. 2015;45(2):174-177.spa
dcterms.bibliographicCitationde Araujo CF, Silva DM, Carneiro MT, Ribeiro S, Fontana-Maurell M, Alvarez P, et al. Detection of carbapenemase genes in aquatic environments in Rio de Janeiro, Brazil. Antimicrob Agents Chemother. 2016;60(7): 4380-4383.spa
dcterms.bibliographicCitationSchäberle TF, Hack IM. Overcoming the current deadlock in antibiotic research. Trends Microbiol. 2014;22(4):165-167.spa
dcterms.bibliographicCitationSalyers AA, Kyung M, Schlesinger D. The human intestinal tract- a hotbed of resistance gene transfer. Clin. Microbiol. Newsl. 2007;29(3): 25-30.spa
dcterms.bibliographicCitationMosquito S, Ruiz J, Bauer JL, Ochoa TJ. Mecanismos moleculares de resistencia antibiótica en Escherichia coli asociadas a diarrea. Rev Peru Med Exp Salud Publica. 2011;28(4):648-56.spa
dcterms.bibliographicCitationDu D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Current Opinion in Structural Biol. 2015;33:76-91.spa
dcterms.bibliographicCitationSoo VW, Hanson-Manful P, Patrick WM. Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci USA. 2011;108(4):1484-1489.spa
dcterms.bibliographicCitationYılmaz Ç, Özcengiz G. Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol. 2017;133:43-62.spa
dcterms.bibliographicCitationEdgar R, Bibi E. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol. 1997;179(7):179-227.spa
dcterms.bibliographicCitationAdler J, Lewinson O, Bibi E. Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry. 2004;43(2):518-525.spa
dcterms.bibliographicCitationJiang X, Yu T, Liang Y, Ji S, Guo X, Ma J, et al. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J food Microbiol. 2015;217:141-145.spa
dcterms.bibliographicCitationAdler J, Bibi E. Membrane topology of the multidrug transporter MdfA: complementary gene fusion studies reveal a nonessential C terminal domain. J Bacteriol. 2002;184(12):3313-3320.spa
dcterms.bibliographicCitationFluman N, Bibi E. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim Biophys Acta. 2009;1794(5):738-747.spa
dcterms.bibliographicCitationLevy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12):122-129.spa
dcterms.bibliographicCitationAllen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8(4):251-259.spa
dcterms.bibliographicCitationGarcía MC. Escherichia coli portador de betalactamasas de espectro extendido. Sanid Mil. 2013;69(4):244-248.spa
dcterms.bibliographicCitationLozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-2128.spa
dcterms.bibliographicCitationMedina J, Paciel D, Noceti O, Rieppi G. Actualización acerca de colistina (polimixina E): aspectos clínicos, PK/PD y equivalencias. Rev Méd Urug. 2017;33(3):195-206.spa
dcterms.bibliographicCitationHoofnagle JH, Sherker AH. Therapy for hepatitis C. N Engl J Med. 2014;370(16):1552-1553spa
dcterms.bibliographicCitationBaharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev. 2014;38(6):1126-1145spa
dcterms.bibliographicCitationNathan C, Cars O. Antibiotic resistance--problems, progress, and prospects. N Engl J Med. 2014;371(19):1761-1763.spa
dcterms.bibliographicCitationChartrand SA, Thompson KJ, Sanders CC. Antibiotic-resistant, gram-negative bacillary infections. Semin Pediatr Infect Dis. 1996;7(3):187-203spa
dcterms.bibliographicCitationOMS. Estrategia mundial de la OMS para contener la resistencia a los antimicrobianos. Panam J Public Health [En línea]. 2001 [Consultado 7 julio 2018]; 10:284-293. Disponible en http://iris.paho.org/xmlui/bitstream/handle/123456789/8647/6772.pdf?sequence=1&isAllowed=yspa
dcterms.bibliographicCitationEdmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals: a three year analysis. Clin Infect Dis. 1999;29(2):239-44.spa
dcterms.bibliographicCitationPallecchi L, Bartoloni A, Riccobono E, Fernandez C, Mantella A, Magnelli D, et al. Quinolone resistance in absence of selective pressure: the experience of a very remote community in the amazon forest. PLoS Negl Trop Dis. 2012;6(8):e1790.spa
dcterms.bibliographicCitationAndriole VT. The quinolones: past, present, and future. Clin Infect Dis. 2015;41(2):113-119.spa
dcterms.bibliographicCitationMuth TR, Schuldiner S. A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE. EMBO J. 2000;19(2):234-240.spa
dcterms.bibliographicCitationMurray IA, Shaw WV. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 1997;41(1):1-6.spa
dcterms.bibliographicCitationMine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. Evidence for chloramphenicol/ H + antiport in Cmr (MdfA) system of Escherichia coli and properties of the antiporter. J Biochem. 1998;124(1):187-193.spa
dcterms.bibliographicCitationRodríguez-Angeles G. Principales características y diagnóstico de los grupos patógenos de Escherichia coli. Salud Publica Mex. 2002;44(5):464-475.spa
dcterms.bibliographicCitationBrooks GF, Morse SA, Carroll KC, Miertzner TA Butel JB. Jawetz, Melnick y Adelbergs Microbiología Médica. 25a edición. España: Editorial Mc Graw Hill; 2011. 220 p.spa
dcterms.bibliographicCitationWang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob. Agents Chemother. 2003;47(7):2242-2248.spa
dcterms.bibliographicCitationAbramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003;301:610-615.spa
dcterms.bibliographicCitationOjeda A, Prado V, Martinez J, Arellano C, Borczyk A, Johnson W, et al. Sorbitol-negative phenotype among enterohemorrhagic Escherichia coli strains of different serotypes and from different sources. J Clin Microbiol. 1995;33(2):2199-2201.spa
dcterms.bibliographicCitationNataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin. Microbiol. Clin Microbiol Rev. 1998;11(1):142-201.spa
dcterms.bibliographicCitationPaulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol. 2003;6(5):446-451.spa
dcterms.bibliographicCitationRotem D, Schuldiner S. EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. J Biol Chem. 2004;279(47):48787-48793.spa
dcterms.bibliographicCitationWood PK, Morris JG Jr, Small PL, Sethabutr O, Toledo MR, Trabulsi L, et al. Comparison of DNA probes and the Sereny test for identification of invasive Shigella and Escherichia coli strains. J Clin Microbiol. 1986;24(3):498-500.spa
dcterms.bibliographicCitationSasakawa C, Kamata K, Sakai T, Murayama SY, Makino S, Yoshikawa M. Molecular alteration of the 140 megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun. 1986;51(2):470-475.spa
dcterms.bibliographicCitationSchumacher MA, Miller MC, Brennan RG. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J. 2004;23(15): 2923-2930.spa
dcterms.bibliographicCitationBegum D, Strockbine NA, Sowers EG, Jackson MP. Evaluation of a technique for identification of Shiga-like toxin-producing Escherichia coli by using polymerase chain reaction and digoxigenin-labeled probes. J Clin Microbiol 1993;31(12):3153-3156.spa
dcterms.bibliographicCitationTenover FC. Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin Microbiol Revs. 1988;1(1):82-101.spa
dcterms.bibliographicCitationSigal N, Molshanski-Mor S, Bibi E. No single irreplaceable acidic residues in the Escherichia coli secondary multidrug transporter MdfA. J Bacteriol. 2006;188(15):5635-5639.spa
dcterms.bibliographicCitationSulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother. 2001;45(4):1126-1136.spa
dcterms.bibliographicCitationVillaseca JM, Navarro-García F, Mendoza-Hernández G, Nataro JP, Cravioto A, Eslava C. Pet toxin form enteroaggregative Escherichia coli produces cellular damage associated with fodrin disruption. Infect Immun. 2000;68(10):5920-5927.spa
dcterms.bibliographicCitationHenderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun. 1999;67(11):5587-5596spa
dcterms.bibliographicCitationAmmon A, Petersen LR, Karch H. A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of Escherichia coli O157:H7. J Infect Dis. 1999;179(5):1274-1277.spa
dcterms.bibliographicCitationCastro, AM. Bacteriología médica basada en problemas. Segunda edición. México: Editorial El Manual Moderno; 2014.174-177p.spa
dcterms.bibliographicCitationMurray PR, Rosenthal KS, Pfaller MA. Microbiología médica. Séptima edición. España: Editorial ELSEVIER; 2014. 261-262, 264 p.spa
dcterms.bibliographicCitationMadigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock. Microbiología de los microorganismos. 14a edición. España: Editorial PEARSON EDUCACIÓN; 2015. 890p.spa
dcterms.bibliographicCitationPueyo JM, Artigas JM, Sánchez JE. Guía de terapéutica antimicrobiana. España: Editorial Antares; 2018. 3-27p.spa
dcterms.bibliographicCitationSaier MH Jr, Paulsen IT. Phylogeny of multidrug transporters. Semin Cell Dev Biol. 2001;12(3):205-213.spa
dcterms.bibliographicCitationConant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9(12):938-950.spa
dcterms.bibliographicCitationTirosh O, Sigal N, Gelman A, Sahar N, Fluman N, Siemion S, et al. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc Natl Acad Sci USA. 2012;109(31):12473-12478.spa
dcterms.bibliographicCitationWang D, Liang H, Chen J, Mou Y, Qi Y. Structural and environmental features of novel mdfA variant and mdfA genes in recombinant regions of Escherichia coli. Microb Drug Resist. 2014;20(5):392-398.spa
dcterms.bibliographicCitationFluman N, Adler J, Rotenberg SA, Brown MH, Bibi E. Export of a single drug molecule in two transport cycles by a multidrug efflux pump. Nat Commun. 2014;5:1-9.spa
dcterms.bibliographicCitationYasufuku T, Shigemura K, Shirakawa T, Matsumoto M, Nakano Y, Tanaka K, et al. Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli strains clinically isolated from urinary tract infection patient. J. Clin. Microbiol. 2011;49(1):189-194.spa
dcterms.bibliographicCitationPaltansing S, Tengeler AC, Kraakman ME, Claas EC, Bernards AT. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Escherichia coli. Microb Drug Resist. 2013;19(6):469-476.spa
dcterms.bibliographicCitationSato T, Yokota S, Uchida I, Okubo T, Usui M, Kusumoto M, et al. Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations. Front Microbiol. 2013;4(125):1-12.spa
dcterms.bibliographicCitationLee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J. Bacteriol. 2000;182(11):3142-3150.spa
dcterms.bibliographicCitationLewinson O, Padan E, Bibi E. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci USA. 2004;101(39):14073-14078.spa
dcterms.bibliographicCitationBohn C, Bouloc P. The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-beta-D-thiogalactopyranoside exclusion and spectinomycin sensitivity. J. Bacteriol. 1998;180(22):6072-6075.spa
dcterms.bibliographicCitationLili Li, Lei Ye, Sofie Kromann, Hecheng Meng. Occurrence of extended-spectrum β-lactamases, plasmid-mediated quinolone resistance, and disinfectant resistance genes in Escherichia coli isolated from ready-to-eat meat products. Foodborne Pathog. Dis. 2017;14(2):109-115.spa
dcterms.bibliographicCitationBurgos MJ, Márquez ML, Pulido R, Gálvez A, Lopez R. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int J Food Microbiol. 2016;238:89-95.spa
dcterms.bibliographicCitationVillalobos AP, Barrero LI, Rivera SM, Ovalle MV, Valera D. Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomed. 2014;34(1):67-80.spa
dcterms.bibliographicCitationFarfán-García AE, Zhang C, Imdad A, Arias-Guerrero MY, Sánchez-Alvarez NT, Shah R, et al. Case-control pilot study on acute diarrheal disease in a geographically defined pediatric population in a middle income country. Int J Pediatr. 2017;2017:1-10.spa
dcterms.bibliographicCitationFernández Márquez ML, Grande Burgos MJ, López Aguayo MC, Pérez Pulido R, Gálvez A, Lucas R. Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. Food Microbiol. 2017;62:77-81 91spa
dcterms.bibliographicCitationLi L, Ye L, Kromann S, Meng H. Occurrence of Extended-Spectrum b-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. Foodborne Pathog Dis. 2017;14(2):109-115. 92spa
dcterms.bibliographicCitationGrande Burgos MJ, Fernández Márquez ML, Pérez Pulido R, Gálvez A, Lucas López R. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int J Food Microbiol. 2016;238:89-95spa
dcterms.bibliographicCitationCantón R, González-Alba JM, Galán JC. CTX-M enzymes: Origin and diffusion. Front Microbiol. 2012;3(110):1-19spa
dcterms.bibliographicCitationYardeni EH, Zomot E, Bibi E. The fascinating but mysterious mechanistic aspects of multidrug transport by MdfA from Escherichia coli. Res Microbiol. 2018;169(7-8):455-460spa
dcterms.bibliographicCitationHeng J, Zhao Y, Liu M, Liu Y, Fan J, Wang X, et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 2015;25(9),1060-1073spa
dcterms.bibliographicCitationMadej MG, Sun L, Yan N, Kaback HR. Functional architecture of MFS D-glucose transporters. Proc Natl Acad Sci USA. 2014;111(7):E719-E727spa
dcterms.bibliographicCitationAhmad N, Pottinger P, Drew WL, Reller LB, Lagunoff M, Sterling CR. Sherris Medical Microbiology. Sixth edition. USA: Editorial MCGraw-Hill Education; 2014 Pág 581,583spa
dcterms.bibliographicCitationSRI International. EcoCYc [Internet]. Ravenswood: [Consultado 10 junio 2019]. Disponible en: https://biocyc.org/gene?orgid=ECOLI&id=G6440#tab=RXNS.spa
dc.description.versionEj. 1spa
dc.contributor.educationalValidatorTrejos Suárez, Juanita-
dc.identifier.localT 17.19 S161i-
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.proposalGen mdfAspa
dc.subject.proposalProteína MdfAspa
dc.subject.proposalMutaciónspa
dc.subject.proposalIn Silicospa
dc.subject.proposalMultidrogorresistentespa
dc.subject.proposalMdfA genespa
dc.subject.proposalMdfA proteinspa
dc.subject.proposalMutationspa
dc.subject.proposalIn Silicospa
dc.subject.proposalMulti-drug resistantspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.description.abstractenglishBacterial resistance is a serious problem at present. The isolation of strains resistant to ciprofloxacin and nalidixic acid is one of the clinical repercussions of inadequate empirical treatment in the face of serious infections. Objective: To determine the presence of the mdfA gene in pathogenic and commensal E. coli strains with phenotypic patterns of ciprofloxacin and nalidixic acid obtained in faecal samples from a pediatric population in the Bucaramanga area and its metropolitan area. Methodology: Descriptive study for the identification and analysis of mutations of the mdfA gene in strains of E. coli. Results: In this study, the mdfA gene was identified in 64 pathogenic and commensal E. coli strains of a pediatric population through conventional PCR. The PCR product of 9 strains was selected for the analysis of forward and reverse sequences which were associated to the following chromosomal genomes of E. coli Z1002, PSUO2, FORC_044, FAM21845, E62 and ATO1. Subsequently, an In Silico search was performed on proteins related to antibiotic resistance mediated by efflux pumps located in these genomes. Of the 43 proteins obtained their complete amino acid sequences were used for phylogenetic analysis. The analysis revealed the alignment of two homologous proteins ASL30596.1 and ARD54462.1 with the wild-type protein WP_116923934.1. These proteins shared a sequence identity of 41.44% and 41.18% respectively and a degree of similarity of 0.41% in both. The most significant mutations of these two proteins were analyzed by bioinformatic programs that suggested that the phenotypic patterns to ciprofloxacin and nalidixic acid were probably not related to the functioning of the MdfA efflux pump. Conclusion: There is a possibility that the presence of the mdfA gene was not related to the phenotypic patterns specific to ciprofloxacin and nalidixic acid.spa
dc.thesis.nameBacteriólogo y Laboratorista Clínicospa
dc.thesis.disciplineFacultad de Ciencias de la Salud - Bacteriología y Laboratorio Clínicospa
dc.thesis.levelPregradospa
Appears in Collections:ACCA. Trabajos de Grado



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.