Publicación: Estudio de Secuencias Genéticas Asociadas a Lipasas Extracelulares de Candida Palmioleophila Para su Expresión en Kluyveromyces Lactis
Estudio de Secuencias Genéticas Asociadas a Lipasas Extracelulares de Candida Palmioleophila Para su Expresión en Kluyveromyces Lactis
dc.contributor.advisor | Valdivieso-Quintero, Wilfredo | |
dc.contributor.advisor | Hernández-Peñaranda, Indira Paola | |
dc.contributor.advisor | Rondón-Villarreal, Nydia Paola | |
dc.contributor.author | Acevedo-Castro, Mayra Alejandra | |
dc.contributor.jury | Fajardo-López, Mónica | |
dc.contributor.jury | Zafra-Sierra, Germán Alexis | |
dc.date.accessioned | 2023-03-28T23:07:11Z | |
dc.date.available | 2023-03-28T23:07:11Z | |
dc.date.issued | 2022-12-01 | |
dc.description | Digital | spa |
dc.description.abstract | La levadura C. palmioleophila tiene capacidad para degradar grasas y aceites en el tratamiento de efluentes residuales de la refinación del aceite de palma (Agualimpia et al., 2016; Rodríguez et al., 2016). Recientemente se realizó el estudio del genoma de C. palmioleophila (datos no publicados) en el que se identificaron 8 secuencias de ADN que guardaban identidad con lipasas extracelulares de otras especies del género Candida. Teniendo en cuenta la importancia de las lipasas en la industria de alimentos, agrícola, farmacéutica y cosmética, el presente trabajo tuvo como objetivo estudiar secuencias genéticas asociadas a lipasas extracelulares de Candida palmioleophila para su expresión en Kluyveromyces lactis. Para ello, se realizó la caracterización in silico de las secuencias mediante la búsqueda de atributos asociados a lipasas extracelulares tales como la presencia de sitio activo, péptido señal y la comparación de modelos predictivos con estructuras cristalográficas reportadas. Se seleccionó la secuencia de ADN denominada Sec6 que codifica para una proteína de 205 aminoácidos y en cuya secuencia de aminoácidos se encontró péptido señal, el motivo acil hidrolasa y el posible sitio activo de las lipasas, adicionalmente los modelos generados presentaron una identidad del 48.96 % con la lipasa 4 de Candida viswanatti y una similitud estructural con la lipasa A de Candida antarctica con un RSMD de 0.83. La secuencia de ADN fue optimizada para su expresión en K. lactis por medio del vector pKLAC2. El mejor transformante de lipasa recombinante sec6 de Candida palmioleophila codificante de una proteína de 22.5 kDa, produjo 289.46 de proteína parcialmente purificada del cultivo suplementado con galactosa 2% como inductor. Su expresión fue favorecida al aumentar el tiempo de cultivo, pero no la cantidad de inductor. La actividad de la proteína derivada de la secuencia Sec6, mostró actividad de lipasa en medio suplementado con aceite de oliva y actividad enzimática de 17.3 U/mg de proteína en la hidrólisis del p-nitrofenil acetato. Los resultados presentados permitieron evidenciar la expresión heteróloga de la lipasa (Sec6) de Candida palmioleophila y la categorización de las secuencias codificantes para trabajos posteriores dirigidos a la expresión de otras lipasas, el estudio de otros factores que afecten su actividad enzimática y las posibles aplicaciones biotecnológicas de las lipasas recombinantes de Candida palmioleophila. | spa |
dc.description.abstract | The yeast C. palmioleophila has the capacity to degrade fats and oils in the treatment of residual effluents from palm oil refining (Agualimpia et al., 2016; Rodríguez et al., 2016). A study of the genome of C. palmioleophila (unpublished data) was recently carried out, in which 8 DNA sequences were identified that were identical with extracellular lipases from other species of the genus Candida. Taking into account the importance of lipases in the food, agricultural, pharmaceutical and cosmetic industries, the present work aimed to study genetic sequences associated with extracellular lipases from Candida palmioleophila for their expression in Kluyveromyces lactis. For this, the in silico characterization of the sequences was carried out by searching for attributes associated with extracellular lipases such as the presence of an active site, signal peptide and the comparison of predictive models with reported crystallographic structures. The DNA sequence called Sec6 was selected, which codes for a protein of 205 amino acids and in whose amino acid sequence signal peptide, the acyl hydrolase motif and its possible active site of lipases were found, additionally the generated models presented an identity of 48.96% with lipase 4 from Candida viswanatti and a structural similarity with lipase A from Candida antarctica with an RSMD of 0.83. The DNA sequence was optimized for its expression in K. lactis by means of the pKLAC2 vector. The best transformant of Candida palmioleophila recombinant lipase sec6 encoding a 22.5 kDa protein, produced 289.46 ug/mL of partially purified protein from culture supplemented with 2% galactose as inducer. Its expression was favored by increasing the culture time, but not the amount of inducer. The activity of the protein derived from the Sec6 sequence showed lipase activity in medium supplemented with olive oil and enzymatic activity of 17.3 U/mg of protein in the hydrolysis of pnitrophenyl acetate. The presented results allowed to evidence the heterologous expression of the lipase (Sec6) of Candida palmioleophila and the categorization of the coding sequences for later works directed to the expression of other lipases, the study of other factors that affect their enzymatic activity and the possible biotechnological applications of recombinant lipases from Candida palmioleophila. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Biotecnología | |
dc.description.tableofcontents | 1. Introducción ...................................................................................................................... 20 2. Planteamiento del Problema .............................................................................................. 22 3. Pregunta de Investigación ................................................................................................. 24 4. Justificación....................................................................................................................... 25 5. Marco Teórico ................................................................................................................... 28 5.1. Lipasas............................................................................................................................... 28 5.1.1. Propiedades y Características .......................................................................................... 28 5.1.2. Microorganismos Productores.......................................................................................... 30 5.1.3. Aplicaciones Biotecnológicas. .......................................................................................... 31 5.2. Candida palmioleophila .................................................................................................... 33 5.3. Caracterización Bioinformática de Proteínas .................................................................... 34 5.4. Expresión Heteróloga de Proteínas ................................................................................. 35 5.4.2. Kluyveromyces lactis Como Sistema de Expresión ........................................................ 35 5.5. Purificación de Proteínas ................................................................................................ 41 5.5.1. Purificación de Proteínas Por Cromatografía de Intercambio Iónico ........................... 41 6. Marco Referencial .......................................................................................................... 44 7. Objetivos ......................................................................................................................... 48 7.1. Objetivo General ............................................................................................................. 48 7.2. Objetivos Específicos. .................................................................................................... 48 8. Metodología .................................................................................................................... 49 8.1. Caracterización de Secuencias. ....................................................................................... 49 8.1.1. Identificación de marcos de lectura e identidad con lipasas extracelulares reportadas en secuencias de C. palmioleophila. ................................................................................................. 49 8.1.2. Extracelulares ............................................................................................................................... 50 8.2. Diseño de Oligonucleótidos ............................................................................................ 51 8.3. Microorganismos y Condiciones de Cultivo .................................................................. 52 8.4. Obtención de ADN ......................................................................................................... 53 8.5. Amplificación Por PCR .................................................................................................. 54 8.6. Expresión Heteróloga. .................................................................................................... 55 8.6.1. Optimización de Codones y Síntesis de Secuencia ......................................................... 56 8.6.2. Transformación de E. coli OneShot TOP10. .................................................................. 56 8.6.3. Transformación de Kluyveromyces lactis GG799. ......................................................... 57 8.7. Producción de la Proteína Recombinante y Evaluación de la Actividad de Lipasa. ...... 59 8.7.1. Evaluación de Condiciones de Producción de la Proteína Recombinante. ................... 60 8.7.2. Fraccionamiento del Concentrado Proteico. ................................................................. 61 8.7.3. Actividad Lipolítica Medida Por Difusión en Agar Rodamina B. .................................. 63 8.7.4. Ensayo de Liberación de p-nitrofenol ............................................................................ 64 9. Resultados y discusión .................................................................................................... 65 9.1. Caracterización de secuencias asociadas a lipasas extracelulares de Candida palmioleophila .............................................................................................................................. 65 9.1.1. Identificación de marcos de lectura e identidad con lipasas extracelulares reportadas en secuencias de C. palmioleophila. ................................................................................................. 65 9.1.2. ............................. 69 9.2. Amplificación Del Fragmento de Seq 6 Por PCR. ......................................................... 74 LIPASAS EXTRACELULARES DE Candida palmioleophila | 10 9.3. Aseguramiento del Vector de Expresión pKLAC2-Sec6 ............................................... 76 9.4. Transformación de Kluyveromyces lactis GG799 Para la Expresión de Sec6................ 77 9.5. Expresión de Proteína Recombinante Extracelular de Candida palmioleophila ............ 80 9.5.1. Fraccionamiento de la Proteína ..................................................................................... 84 9.6. Actividad Enzimática ...................................................................................................... 88 9.6.1. Método en Placa Con Rodamina B ................................................................................ 88 9.6.2. Ensayo de p-nitrofenol .................................................................................................... 89 10. Conclusiones ................................................................................................................... 91 11. Recomendaciones ........................................................................................................... 93 12. Referencias Bibliográficas .............................................................................................. 94 13. Apéndice ....................................................................................................................... 134 | spa |
dc.format.extent | 185 p | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Santander | |
dc.identifier.local | T 91.22 A129e | |
dc.identifier.reponame | Repositorio Digital Universidad de Santander | |
dc.identifier.repourl | https://repositorio.udes.edu.co | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/8233 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Santander | |
dc.publisher.branch | Bucaramanga | |
dc.publisher.faculty | Facultad de Ciencias Exactas, Naturales y Agropecuarias | |
dc.publisher.place | Bucaramanga, Colombia | |
dc.publisher.program | Maestría en Biotecnología | |
dc.relation.references | Acikara, Ö. B. (2013). Ion exchange chromatography and its applications. Column chromatography, 10, 55744. ISBN 978-953-51-1074-3. http://dx.doi.org/10.5772/47823. | |
dc.relation.references | Adetunji A.I. y Olaniran, A.O. (2018). Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnology & Biotechnological Equipment, 32(6), 1514-1526. https://doi.org/10.1080/13102818.2018.1514985. | |
dc.relation.references | Adetunji, A. I., & Olaniran, A. O. (2021). Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal of Microbiology, 52(3), 12571269. doi:10.1007/s42770-021-00503-5. | |
dc.relation.references | Agualimpia, B., Otero, J.V. y Zafra, G. (2016). Evaluation of native microorganisms for biodegradation of oil and grease in palm oil refinery effluents. Research, 33:1221- 1226. | |
dc.relation.references | Ahmad, I., Nawaz, N., Darwesh, N. M., ur Rahman, S., Mustafa, M. Z., Khan, S. B., y Patching, S. G. (2018). Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein expression and purification, 144, 12-18. https://doi.org/10.1016/j.pep.2017.11.005 | |
dc.relation.references | Al-Sadi, A. (2012). High Throughput Screening of Selectivity for Protein Purification. Tesis maestría. Uppsala University. | |
dc.relation.references | Alabdalall, A. H., Al-Anazi, N. A., Aldakheel, L. A., Amer, F. H., Aldakheel, F. A., Ababutain, I. M., ... y Al-Khaldi, E. M. (2021). Application and characterization of crude fungal lipases used to degrade fat and oil wastes. Scientific reports, 11(1), 1-10. https://doi.org/10.1038/s41598-021-98927-4. | |
dc.relation.references | Alarcón-Vivero, M.R. (2008). Producción de la lipasa Lip2 de C. rugosa en el sistema Pichia pastoris: caracterización y aplicación en reacciones de síntesis. Tesis de doctorado. Universitat Autònoma de Barcelona. Bellaterra. ISBN 9788469174647. | |
dc.relation.references | Ali, A. A., Hameed, K. W., y Nadder, M. I. (2022). Isolation of Pseudomonas aeruginosa from Soil and Production of Lipase Enzyme. In IOP Conference Series: Earth and Environmental Science (Vol. 961, No. 1, p. 012087). IOP Publishing. https://doi.org/10.1088/1755-1315/961/1/012087. | |
dc.relation.references | Ali, S., Liu, X., Sen, L., Lan, D., Wang, J., Hassan, M. I., y Wang, Y. (2021). Sequence and structure-based method to predict diacylglycerol lipases in protein sequence. International Journal of Biological Macromolecules, 182, 455463. doi:10.1016/j.ijbiomac.2021.04.011 | |
dc.relation.references | Amenaghawon, A. N., Orukpe, P. I., Nwanbi-Victor, J., Okedi, M. O., y Aburime, E. I. (2022). Enhanced lipase production from a ternary substrate mix of agricultural residues: A case of optimization of microbial inducers and global sensitivity analysis. Bioresource Technology Reports, 17, 101000. https://doi.org/10.1016/j.biteb.2022.101000. | |
dc.relation.references | Anders, A., Lilie, H., Franke, K., Kapp, L., Stelling, J., Gilles, E.D., y Breunig, K.D. (2006). The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding. J. Biol. Chem. 281 (39), 2933729348. https://doi.org/10.1074/jbc.M604271200. | |
dc.relation.references | Andler, S. M., y Goddard, J. M. (2018). Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. npj Science of Food, 2(1), 1-11. https://doi.org/10.1038/s41538-018-0028-2. | |
dc.relation.references | Andualema, B., y Gessesse, A. (2012). Microbial lipases and their industrial applications. Biotechnology, 11(3), 100. | |
dc.relation.references | Anobom, C. D., Pinheiro, A. S., De Andrade, R. A., Aguieiras, E. C., Andrade, G. C., Moura, M. V. y Freire, D. M. (2014). From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases. BioMed Research International, 1-11. https://doi.org/10.1155/2014/684506 | |
dc.relation.references | Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, y Stockinger H. (2012). ExPASy: SIB bioinformatics resource portal, Nucleic Acids Res, 40(W1):W597-W603. PMID: 22661580 PMCID: PMC3394269. https://doi.org/10.1093/nar/gks400. | |
dc.relation.references | Asad, S., Khajeh, K., y Ghaemi, N. (2011). Investigating the structural and functional effects of mutating Asn glycosylation sites of horseradish peroxidase to Asp. Applied biochemistry and biotechnology, 164(4), 454-463. https://doi.org/10.1007/s12010- 010-9147-1. | |
dc.relation.references | uses of enzymes for biodiesel , Biobased Chemicals, and Bioproducts, ed. M. Hosseini (Sawston: Woodhead Publishing), 135152. doi: 10.1016/b978-0-12-817941-3.00007-3. | |
dc.relation.references | Baghban, R., Farajnia, S., Rajabibazl, M., Ghasemi, Y., Mafi, A., Hoseinpoor, R. y Aria, M. (2019). Yeast Expression Systems: Overview and Recent Advances. Molecular Biotechnology. doi:10.1007/s12033-019-00164-8. | |
dc.relation.references | Barriuso, J., Vaquero, M. E., Prieto, A., & Martínez, M. J. (2016). Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnology Advances, 34(5), 874-885. https://doi.org/10.1016/j.biotechadv.2016.05.004. | |
dc.relation.references | Becker, P., Abu-Reesh, I., Markossian, S., Antranikian, G. y Märkl, H. (1997). Determination of the kinetic parameters during continuous cultivation of the lipase producing thermophile Bacillus sp. on olive oil. Appl. Microbiol. Biotechnol.,48(2), 184-190. https://doi.org/10.1007/s002530051036. | |
dc.relation.references | Bell P.J., Sunna A., Gibbs M.D., Curach N.C., Nevalainen H. y Bergquist P.L. (2002). Prospecting for novel lipase genes using PCR. Microbiology, 148, 2283-2291. doi:10.1099/00221287-148-8-2283 | |
dc.relation.references | Ben Hilma, H., Dammak, M., Karray, A., Drira, M., Michaud, P., Fendri, I y Abdelkafi, S. (2021). Molecular and Structural Characterization of Lipases from Chlorella by Functional Genomics. Mar. drugs. 19, 70. https://doi.org/10.3390/md19020070. | |
dc.relation.references | Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., y Ouellette, B. F. (1998). GenBank. Nucleic acids research, 26(1), 1-7. doi:10.1093/nar/26.1.1. | |
dc.relation.references | Bernaudat, F., Frelet-Barrand, A., Pochon, N., Dementin, S., Hivin, P., Boutigny, S. y Rolland, N. (2011). Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host. PLoS ONE, 6 (12), e29191. doi:10.1371/journal.pone.0029191. | |
dc.relation.references | Bertoni, M., Kiefer, F. y Biasini, M. (2017). Modeling protein quaternary structure of homoand hetero-oligomers beyond binary interactions by homology. Sci Rep 7, 10480. https://doi.org/10.1038/s41598-017-09654-8. | |
dc.relation.references | Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T. y Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, 42(W1), W252-W258. https://doi.org/10.1093/nar/gku340. | |
dc.relation.references | Bienert, S., Waterhouse, A., de Beer, T.A.P., Tauriello, G., Studer, G., Bordoli, L. y Schwede, T. (2017). The SWISS-MODEL Repository - new features and functionality. Nucleic Acids Res. 45, D313-D319. https://doi.org/10.1093/nar/gkw1132 | |
dc.relation.references | Bonekamp, F. J.,y Oosterom, J. (1994). On the safety of Kluyveromyces lactisa review. Applied microbiology and biotechnology, 41(1), 1-3. https://doi.org/10.1007/BF00166072. | |
dc.relation.references | Boran, R., y Ugur, A. (2010). Partial purification and characterization of the organic solventtolerant lipase produced by Pseudomonas fluorescens RB02-3 isolated from milk. Preparative Biochemistry & Biotechnology, 40(4), 229-241. https://doi.org/10.1080/10826068.2010.488929 | |
dc.relation.references | Breunig, K. D., BolotinFukuhara, M., Bianchi, M. M., Bourgarel, D., Falcone, C., Ferrero, I., ... y Zeeman, A. M. (2000). Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme and microbial technology, 26(9-10), 771-780. https://doi.org/10.1016/S0141-0229(00)00170-8. | |
dc.relation.references | Britto, K. B., y Paneto, G. G. (2021). EXPRESSÃO HETERÓLOGA DE PROTEÍNAS. 2021 by Atena Editora Copyright© Atena Editora Copyright do Texto© 2021 Os autores Copyright da Edição© 2021 Atena Editora Direitos para esta edição cedidos à Atena Editora, 69. ISBN 978-65-5983-301-6. https://doi.org/10.22533/at.ed.016211607. | |
dc.relation.references | Brown, T. A. (2020). Gene cloning and DNA analysis: an introduction. John Wiley & Sons. ISBN 9781119640752. | |
dc.relation.references | Brunel, L., Neugnot, V., Landucci, L., Boze, H., Moulin, G., Bigey, F., y Dubreucq, E. (2004). High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris. Journal of biotechnology, 111(1), 41-50. https://doi.org/10.1016/j.jbiotec.2004.03.007. | |
dc.relation.references | Brunelle, J. L., y Green, R. (2014). Coomassie blue staining. In Methods in enzymology (Vol. 541, pp. 161-167). Academic Press. https://doi.org/10.1016/B978-0-12-420119- 4.00013-6. | |
dc.relation.references | Carvalho, A. S. S., Cruz, E., Andrade, V. V. V., Serra, J. L., Martins, M. A., Martins, M. L. L., y de Moraes, L. P. (2022). Agroindustrial co-products and waste cooking oil in the production of lipases by thermophilic Bacillus licheniformis SMIA-3. Acta Scientiarum. Technology, 44 (1), e56416. https://doi.org/10.4025/actascitechnol.v44i1.56416. | |
dc.relation.references | Casas-Godoy, L., Gasteazoro, F., Duquesne, S., Bordes, F., Marty, A. y Sandoval, G. (2018). Lipases: An Overview. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_1. | |
dc.relation.references | Castelblanco-Velandia A.A. (2011). Búsqueda de genes codificadores de lipasas en una biblioteca metagenómica de suelo de bosque alto andino mediante PCR. Trabajo de grado. Pontificia Universidad Javeriana. Bogotá, DC. Recuperado de: http://hdl.handle.net/10554/8739. | |
dc.relation.references | Production of recombinant proteins by yeast cells. Biotechnology Advances, 30(5), 11081118. doi:10.1016/j.biotechadv.2011.09. | |
dc.relation.references | P., y Nicaud, J.-M. (2018). Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags. Applied Microbiology and Biotechnology, 102(12), 52215233. doi:10.1007/s00253-018-8966-9 | |
dc.relation.references | Celligoi, M. A. P. C., Baldo, C., de Melo, M. R., Gasparin, F. G. M., Marques, T. A., y de Barros, M. (2017). Lipase properties, functions and food applications. In Microbial enzyme technology in food applications (pp. 214-240). CRC Press. https://doi.org/10.1201/9781315368405. | |
dc.relation.references | Cely Castro, R., Díaz Gómez, J., Pulido, D., Acosta, O., y Guerrero, C. A. (2006). Producción de la proteína de choque térmico HSC70 recombinante en Escherichia coli BL21 (DE3) para generar anticuerpos policlonales. Revista de la Facultad de Medicina, 54(3), 156-168. | |
dc.relation.references | Cen, Y., Singh, W., Arkin, M., Moody, T. S., Huang, M., Zhou, J., ... y Reetz, M. T. (2019). Artificial cysteine-lipases with high activity and altered catalytic mechanism created by laboratory evolution. Nature communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-11155-3. | |
dc.relation.references | Chaillan, F., Le Flèche, A., Bury, E., Phantavong, Y.-H., Grimont, P., Saliot, A. y Oudot, J. (2004). Identification and biodegradation potential of tropical aerobic hydrocarbondegrading microorganisms. Res. Microbiol, 155, 587595. https://doi.org/10.1016/j.resmic.2004.04.006. | |
dc.relation.references | Chandra, P., Singh, R., y Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19(1), 1-42. https://doi.org/10.1186/s12934-020-01428-8. | |
dc.relation.references | Chavez, M. J. H. (2018). Contribución de la glicosilación de proteínas de pared celular en el reconocimiento inmune innato de Candida tropicalis. Tesis de doctorado. Universidad de Guanajuato. Guanajuato, México. Recuperado de http://repositorio.ugto.mx/handle/20.500.12059/1692. | |
dc.relation.references | Chen, X., Li, C. y Liu, H. (2021). Enhanced Recombinant Protein Production Under Special Environmental Stress. Front. Microbiol. 12:630814. doi: 10.3389/fmicb.2021.630814 | |
dc.relation.references | Chinedu, S. N., Okochi, V. I., y Omidiji, O. (2011). Cellulase production by wild strains of Aspergillus niger, Penicillium chrysogenum and Trichoderma harzianum grown on waste cellulosic materials. Ife Journal of Science, 13(1), 57-62. eISSN: 0794-4896. | |
dc.relation.references | Chung, C. T., y Miller, R. H. (1993). [43] Preparation and storage of competent Escherichia coli cells. Recombinant DNA Part I, 621627. doi:10.1016/0076-6879(93)18045-e | |
dc.relation.references | Chuzel, L., Ganatra, M. B., Schermerhorn, K. M., Gardner, A. F., Anton, B. P., y Taron, C. H. (2017). Complete genome sequence of Kluyveromyces lactis strain GG799, a common yeast host for heterologous protein expression. Genome Announcements, 5(30), e00623-17. https://doi.org/10.1128/genomeA.00623-17. | |
dc.relation.references | Colla, L. M., Primaz, A. L., Benedetti, S., Loss, R. A., Lima, M. D., Reinehr, C. O., ... y Costa, J. A. V. (2016). Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Brazilian Journal of Microbiology, 47, 461-467. https://doi.org/10.1016/j.bjm.2016.01.028. | |
dc.relation.references | Colton, I. (2011). Insights into the molecular basis of chiral acid recognition by Candida rugosa lipase from an X-ray crystal structure of a bound phosphonate transition state analog. Adv. Synth. Catal, 353, 2529-2544. https://doi.org/10.1002/adsc.201100459. | |
dc.relation.references | Colussi, P. y Taron, C. (2005). Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl. Environ. Microbiol. 71 (11), 70927098. https://doi.org/10.1128/AEM.71.11.7092-7098.2005. | |
dc.relation.references | Contesini, F. J., Lopes, D. B., Macedo, G. A., da Graça Nascimento, M., y de Oliveira Carvalho, P. (2010). Aspergillus sp. lipase: potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67(3-4), 163-171. https://doi.org/10.1016/j.molcatb.2010.07.021. | |
dc.relation.references | Cortés, R. B. (2020). Caracterización de una triacilglicerol lipasa del hongo Trichoderma harzianum. Tesis doctoral. Centro de Investigación Científica de Yucatán. Mérida, Yucatán, México. Recuperado de https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/1783/1/PCB_M_Tesis_2 020_Ricardo_Barahona_Cortes.pdf | |
dc.relation.references | Couto, P. M. (2018). Estudio de los determinantes moleculares que regulan la eficiencia de N-glicosilación de proteínas. Tesis de doctorado. CONICET. Recuperado de https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n6298_Couto.pdf | |
dc.relation.references | -Exchange Chromatography: Basic Principles and Application to the Partial Purification of Soluble Mammalian Prolyl and Protocols. New York: Springer;. p215-228. http://dx.doi.org/10.5772/4823 | |
dc.relation.references | Cygler, M., Grochulski, P., Kazlauskas, R. J., Schrag, J. D., Bouthillier, F., Rubin, B., ... y Gupta, A. K. (1994). A structural basis for the chiral preferences of lipases. Journal of the American Chemical Society, 116(8), 3180-3186. https://doi.org/10.1021/ja00087a002. | |
dc.relation.references | Dälken, B., Jabulowsky, R. A., Oberoi, P., Benhar, I., y Wels, W. S. (2010). Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied by in vivo processing of a precursor MBP fusion protein. PLoS One, 5(12), e14404. https://doi.org/10.1371/journal.pone.0014404. | |
dc.relation.references | Daouadji, K. L., Reffas, F. Z. I., Benine, M. L., y Abbouni, B. (2015). Optimization of various physical and chemical parameters for lipase production by Bacillus coagulans. Am Eurasian J Agric Environ Sci, 15(5), 962-968. DOI: 10.5829/idosi.aejaes.2015.15.5.9454 | |
dc.relation.references | Darby, R. A., Cartwright, S. P., Dilworth, M. V., y Bill, R. M. (2012). Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris. Recombinant Protein Production in Yeast, 11-23. https://doi.org/10.1007/978-1-61779-770-5_2. | |
dc.relation.references | Darvishi, F. (2012). Expression of native and mutant extracellular lipases from Yarrowia lipolytica in Saccharomyces cerevisiae. Microbial Biotechnology, 5(5), 634-641. https://doi.org/10.1111/j.1751-7915.2012.00354.x. | |
dc.relation.references | Das, A., Shivakumar, S., Bhattacharya, S., Shakya, S., y Swathi, S. S. (2016). Purification and characterization of a surfactant-compatible lipase from Aspergillus tamarii JGIF06 exhibiting energy-efficient removal of oil stains from polycotton fabric. 3 Biotech, 6(2), 1-8. https://doi.org/10.1007/s13205-016-0449-z. | |
dc.relation.references | Datta N., Arendrup M.C., y Saunte J.P. (2015). First report of Candida palmioleophila endogenous endophthalmitis. Acta ophthalmologica. 93, e517-e518. | |
dc.relation.references | De Almeida, A. F., Dias, K. B., Da Silva, A. C. C., Terrasan, C. R. F., Tauk-Tornisielo, S. M., y Carmona, E. C. (2016). Agro-industrial wastes as alternative for lipase production by Candida viswanathii under solid-state cultivation: purification, biochemical properties, and its potential for poultry fat hydrolysis. Enzyme research, 2016. http://dx.doi.org/10.1155/2016/1353497. | |
dc.relation.references | Díaz, N.A., Ruíz, J.A.B., Reyes, E.F., Cejudo, A.G., Novo, J.J., Peinado, J.P., y Fiñana, I.T. (2010). Espectrofotometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. Universidad de Córdoba.1-8. | |
dc.relation.references | Dimitrijevic, A., Velickovic, D., Bezbradica, D., Bihelovic, F., Jankov, R., y Milosavic, N. (2001). Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar solvents. J. Serb. Chem. Soc., 76, 1081-1092. ISSN: 0352-5139. | |
dc.relation.references | Dong, Z., Jiang, M. Y., Shi, J., Zheng, M. M., y Huang, F. H. (2019). Preparation of immobilized lipase based on hollow mesoporous silica spheres and its application in ester synthesis. Molecules, 24(3), 395. https://doi.org/10.3390/molecules24030395 | |
dc.relation.references | Dror, A., Shemesh, E., Dayan, N., y Fishman, A. (2014). Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Applied and environmental microbiology, 80(4), 1515-1527. https://doi.org/10.1128/AEM.03371-13. | |
dc.relation.references | Drozdikova, E., Garaiova, M., Csaky, Z., Obernauerova, M., y Hapala, I. (2015). Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity. Lett. Appl. Microbiol. 61 (1), 7784. https://doi.org/10.1111/ lam.12425. | |
dc.relation.references | Du, Z., Su, H., Wang,W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., y Yang, J. (2021). The trRosetta server for fast and accurate protein structure prediction. Nature protocols. Vol. 16. Pp. 5634-5651. https://doi.org/10.1038/s41596-021-00628-9. | |
dc.relation.references | Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., ... y Souciet, J. L. (2004). Genome evolution in yeasts. Nature, 430(6995), 35-44. https://doi.org/10.1038/nature02579. | |
dc.relation.references | Echeverrigaray, S., Scariot, F. J., Menegotto, M., y Delamare, A. P. L. (2020). Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity. International journal of food microbiology, 314, 108383. https://doi.org/10.1016/j.ijfoodmicro.2019.108383 | |
dc.relation.references | Elias, N., Wahab, R. A., Jye, L. W., Mahat, N. A., Chandren, S., y Jamalis, J. (2021). Taguchi orthogonal design assisted immobilization of Candida rugosa lipase onto nanocellulose-silica reinforced polyethersulfone membrane: Physicochemical characterization and operational stability. Cellulose, 28(9), 5669-5691. https://doi.org/10.1007/s10570-021-03886-8. | |
dc.relation.references | Emond, S., Montanier, C., Nicaud, J. M., Marty, A., Monsan, P., André, I., y Remaud- Siméon, M. (2010). New efficient recombinant expression system to engineer Candida antarctica lipase B. Applied and environmental microbiology, 76(8), 2684- 2687. https://doi.org/10.1128/AEM.03057-09. | |
dc.relation.references | Eom, G. T., Lee, S. H., Song, B. K., Chung, K. W., Kim, Y. W., y Song, J. K. (2013). Highlevel extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris. Journal of bioscience and bioengineering, 116(2), 165-170. https://doi.org/10.1016/j.jbiosc.2013.02.016 | |
dc.relation.references | Ernst, O., y Zor, T. (2010). Linearization of the Bradford protein assay. JoVE (Journal of Visualized Experiments), (38), e1918. doi:10.3791/1918. | |
dc.relation.references | Ezema, B. O., Omeje, K. O., Bill, R. M., Goddard, A. D., O. Eze, S. O., y Fernandez- Castane, A. (2022). Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii. Journal of Biomolecular Structure and Dynamics, 1-15. https://doi.org/10.1080/07391102.2022.2035821. | |
dc.relation.references | Faisal, P. A., Hareesh, E. S., Priji, P., Unni, K. N., Sajith, S., Sreedevi, S., ... y Benjamin, S. (2014). Optimization of parameters for the production of lipase from Pseudomonas sp. BUP6 by solid state fermentation. Advances in Enzyme Research, 2(04), 125. doi:10.4236/aer.2014.24013 | |
dc.relation.references | Farelo-Traslaviña, L.C. (2022). Estudio de los Niveles de Expresión de Genes Asociados a Lipasas Extracelulares en Cultivos de Candida palmioleophila Suplementados con Aceite de Oliva Como Única Fuente de Carbono. Tesis de pregrado. Universidad de Santander, Bucaramanga, Colombia. Recuperado de https://repositorio.udes.edu.co/entities/publication/304e66df-304b-43e6-8767- a7631baad6dc/full. | |
dc.relation.references | Fatima, S., Faryad, A., Ataa, A., Joyia, F. A., y Parvaiz, A. (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3), 445-458. https://doi.org/10.1002/bab.2019. | |
dc.relation.references | Feng, X., Wu, J., Ling, B., Yang, X., Liao, W., Pan, W., y Yao, Z. (2014). Development of Two Molecular Approaches for Differentiation of Clinically Relevant Yeast Species Closely Related to Candida guilliermondii and Candida famata. Journal of Clinical Microbiology, 52(9), 3190-3195. https://doi.org/10.1128/jcm.01297-14 | |
dc.relation.references | Ferré, F., y Clote, P. (2005). Disulfide connectivity prediction using secondary structure information and diresidue frequencies. Bioinformatics (Oxford, England), 21(10), 23362346. https://doi.org/10.1093/bioinformatics/bti328 | |
dc.relation.references | Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., ... y Bateman, A. (2010). The Pfam protein families database. Nucleic acids research, 38(suppl_1), D211-D222. https://doi.org/10.1093/nar/gkp985. | |
dc.relation.references | Fischer, M., y Pleiss, J. (2003). The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic acids research, 31(1), 319-321. https://doi.org/10.1093/nar/gkg015 | |
dc.relation.references | Fleer, R., Chen, X. J., Amellal, N., Yeh, P., Fournier, A., Guinet, F., ... y Mayaux, J. F. (1991). High-level secretion of correctly processed recombinant human interleukin-Kluyveromyces lactis. Gene, 107(2), 285-295. https://doi.org/10.1016/0378-1119(91)90329-A | |
dc.relation.references | Flores, C., Rodriguez, C., Petit, T., Gancedo, C. (2000). Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev. 24 (4), 507529. https://doi.org/10.1111/j.1574-6976.2000.tb00553.x | |
dc.relation.references | Fritz, J. S., y Gjerde, D. T. (2009). Ion Chromatography (Fourth Completely Revised and Enlarged Edition). Weinhein: Wiley-VCH Verlag GmbH & KGoA Weinhein, 385. | |
dc.relation.references | Fu, Y., Ibrahim, A. S., Fonzi, W., Zhou, X., Ramos, C. F., y Ghannoum, M. A. (1997). Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology, 143(2), 331-340. https://doi.org/10.1099/00221287-143-2-331 | |
dc.relation.references | García-Marnotes, N. (2018). Caracterización bioquímica de una lipasa obtenida a partir de una metagenoteca de aguas termales.Tesis de maestría. Universidade da Coruña- Recuperado de http://hdl.handle.net/2183/20336 | |
dc.relation.references | Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., y Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571607). New York: Humana Press. https://doi.org/10.1385/1-59259-890-0:571 | |
dc.relation.references | Ghori, M. I., Iqbal, M. J., y Hameed, A. (2011). Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Brazilian Journal of Microbiology, 42, 22- 29. https://doi.org/10.1590/S1517-83822011000100003 | |
dc.relation.references | Gihaz, S., Bash, Y., Rush, I., Shahar, A., Pazy Stability: Engineering Disulfide Bonds Towards Enhanced Lipase Biodiesel Synthesis. doi:10.1002/cctc.201901369 | |
dc.relation.references | Glogauer, A., Martini, V. P., Faoro, H., Couto, G. H., Müller-Santos, M., y Monteiro, R. A. (2011). Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact, 10, 54. http://dx.doi.org/10.1186/1475- 2859-10-54 | |
dc.relation.references | Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., ... y Oliver, S. G. (1996). Life with 6000 genes. Science, 274(5287), 546-567. DOI: 10.1126/science.274.5287.546 | |
dc.relation.references | Gómes, A.R., Byregowda, S.M., Veeregowda, B.M., y Balamurugan, V. (2016). An overview of heterologous expression host systems for the production of recombinant proteins. Adv. Anim. Vet. Sci. 4(7): 346-356. http://dx.doi.org/10.14737/journal.aavs/2016/4.7.346.356 | |
dc.relation.references | Gomes, N., Gonçalves, C., García-Román, M., Teixeira, J. A., y Belo, I. (2011). Optimization of a colorimetric assay for yeast lipase activity in complex systems. Analytical Methods, 3(4), 1008-1013. https://doi.org/10.1039/C0AY00680G | |
dc.relation.references | Gonçalves, C., Lopes, M., Ferreira, J. P., y Belo, I. (2009). Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresource technology, 100(15), 3759-3763. https://doi.org/10.1016/j.biortech.2009.01.004 | |
dc.relation.references | González-Bacerio, J., Moreno-Medina, V. R., y del Monte Martínez, A. (2010). Las lipasas: enzimas con potencial para el desarrollo de biocatalizadores inmovilizados por adsorción interfacial. Revista Colombiana de Biotecnología, 12(1), 113-140.ISSN 0123-3475. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 34752010000100013 | |
dc.relation.references | Guo, C., Zheng, R., Cai, R., Sun, C. y Wu, S. (2021). Characterization of Two Unique Cold- Active Lipases Derived from a Novel Deep-Sea Cold Seep Bacterium. Microorganisms. 9, 802. https://doi.org/10.3390/microorganisms9040802 | |
dc.relation.references | Gupta, R. y Brunak, S. (2002). Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput.: 310-22. PMID:11928486. Recuperado de https://books.google.com.co/books?hl=es&lr=&id=LX4zvTqSgLMC&oi=fnd&pg=P A310&dq=Gupta,+R.+y+Brunak,+S.+(2002).+Prediction+of+glycosylation+across+t he+human+proteome+and+the+correlation+to+protein+function.+Pac+Symp+Bioco mput.:+310- 22.+PMID:11928486.&ots=gpwqbnVjnR&sig=DcrgWmPh5djhV4ap8dZLXtr7624& redir_esc=y#v=onepage&q&f=false | |
dc.relation.references | Gupta, R., Kumari, A., Syal, P., y Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 57, 4054. doi:10.1016/j.plipres.2014.12.001. | |
dc.relation.references | Gupta, R., Rathi, P., y Bradoo, S. (2003). Lipase mediated upgradation of dietary fats and oils. Critical reviews in food science and nutrition, 43(6), 635-644. https://doi.org/10.1080/10408690390251147 | |
dc.relation.references | Gururaj, P., Ramalingam, S., Devi, G. N., y Gautam, P. (2016). Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. brazilian journal of microbiology, 47, 647-657. https://doi.org/10.1016/j.bjm.2015.04.002 | |
dc.relation.references | GVR. (2022). Enzymes Market Size, Share & Trends Analysis Report By Product (Lipases, Polymerases & Nucleases, Carbohydrase), By Type (Industrial, Specialty), By Source (Plants, Animals), By Region, And Segment Forecasts, 2022 - 2030. Disponible online: https://www.grandviewresearch.com/industry-analysis/enzymes-industry# (Consultado el 22 de octubre de 2022). | |
dc.relation.references | Haddad, P.R., y Jackson, P.E. (1990). Ion Chromatography. Journal of Chromatography Library-Volume 46 Amsterdam: Elsevier Science; 1990. ISBN 0-444-88232-4. | |
dc.relation.references | Hanahan, D. (1983). Studies on Transformation of Escherichia coli with Plasmids. J. Mol. Biol. (1983) 166, 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8 | |
dc.relation.references | Harju, S., Fedosyuk, H., y Peterson, R. (2004).Rapid isolation of yeast genomic DNA: Bust BMC Biotechnology 4, 8. https://doi.org/10.1186/1472-6750-4-8 | |
dc.relation.references | Hasan, F., Shah, A. A., Javed, S., y Hameed, A. (2010). Enzymes used in detergents: lipases. African journal of biotechnology, 9(31), 4836-4844. eISSN: 1684-5315 | |
dc.relation.references | Hasan, F., Shah, A., y Hameed, A. (2007). Purification and characterization of a mesophilic lipase from Bacillus subtilis FH5 stable at high temperature and pH. Acta Biologica Hungarica, 58(1), 115-132. https://doi.org/10.1556/abiol.58.2007.1.11 | |
dc.relation.references | Healthcare, G. E. (2010). Ion exchange chromatography & chromatofocusing: Principles and methods. Edition AA, Amersham Biosciences, 7. | |
dc.relation.references | Hermoso, J. A., Sanz-Aparicio, J., Molina, R., Juge, N., González, R., y Faulds, C. B. (2004). The Crystal Structure of Feruloyl Esterase A from Aspergillus niger Suggests Evolutive Functional Convergence in Feruloyl Esterase Family. Journal of Molecular Biology, 338(3), 495506. doi:10.1016/j.jmb.2004.03.003 | |
dc.relation.references | Holland, S. L., Reader, T., Dyer, P. S., y Avery, S. V. (2013). Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environmental Microbiology, 16(6), 17291740. https://doi.org/10.1111/1462- 2920.12243 | |
dc.relation.references | Houde, A., Kademi, A., y Leblanc, D. (2004). Lipases and their industrial applications. Applied biochemistry and biotechnology, 118(1), 155-170. https://doi.org/10.1385/ABAB:118:1-3:155 | |
dc.relation.references | Huang, Y., Ren, J., y Qu, X. (2019). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357412. https://doi.org/10.1021/acs.chemrev.8b00672 | |
dc.relation.references | Hube, B., Stehr, F., Bossenz, M., Mazur, A., Kretschmar, M., y Schäfer, W. (2000). Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Archives of microbiology, 174(5), 362- 374. https://doi.org/10.1007/s002030000218 | |
dc.relation.references | Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., ... y Yong, S. Y. (2012). InterPro in 2011: new developments in the family and domain prediction database. Nucleic acids research, 40(D1), D306-D312. https://doi.org/10.1093/nar/gkr948 | |
dc.relation.references | J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8. https://doi.org/10.1038/nmeth.3213 | |
dc.relation.references | J Yang, Y Zhang. (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43: W174-W181. https://doi.org/10.1093/nar/gkv342 | |
dc.relation.references | Jafari, N., Kasra-Kermanshahi, R., y Reaz Soudi, M. (2013). Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iranian Journal of Microbiology, 5(4), 434440. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25848518 | |
dc.relation.references | Jagtap, S. C., y Chopade, B. A. (2015). Purification and characterization of lipase from Acinetobacter haemolyticus TA 106 isolated from human skin. Songklanakarin Journal of Science & Technology, 37(1). | |
dc.relation.references | Jain, R., Pal, V. K., y Roy, S. (2020). Triggering Supramolecular Hydrogelation Using a ProteinPeptide Coassembly Approach. Biomacromolecules, 21(10), 4180-4193. DOI: 10.1021/acs.biomac.0c00984. | |
dc.relation.references | Kachalkin, A.V. (2014). Isolation of a divergent strain of Candida saitoana from the Anyui mummy of a steppe bison (Bison priscus). Microbiology, 83(3), 296 298. doi:10.1134/s0026261714030096 | |
dc.relation.references | Kagaba, J. (2019). Bioprospecting for novel lipases from indigenous olive wastewater biofilms. Tesis de maestría. Cape Peninsula University of Technology. Recuperado d https://etd.cput.ac.za/handle/20.500.11838/2828 | |
dc.relation.references | Kavitha, S., Behera, S. K., Aliya, S., y Uma, A. (2017). A Bioinformatics Approach for Identification of Microorganism Showing Highest Homology for Lipase B Gene. World Journal of Pharmaceutical Sciences, 8-19. ISSN:2321-3086. Recuperado de https://ubipayroll.com/wjpsonline/index.php/wjps/article/view/bioinformaticsidentification- highest-homology-lipase-b-gene | |
dc.relation.references | Khambhaty, Y. (2020). Applications of enzymes in leather processing. Environmental Chemistry Letters, 18(3), 747-769. https://doi.org/10.1007/s10311-020-00971-5 | |
dc.relation.references | Khumalo, L. W., Majoko, L., Read, J. S., y Ncube, I. (2002). Characterisation of some underutilised vegetable oils and their evaluation as starting materials for lipasecatalysed production of cocoa butter equivalents. Industrial Crops and Products, 16(3), 237-244. https://doi.org/10.1016/S0926-6690(02)00051-1 | |
dc.relation.references | Kiamarsi, Z., Soleimani, M., Nezami, A., y Kafi, M. (2019). Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. International Journal of Environmental Science and Technology, 16(11), 6805-6816. https://doi.org/10.1007/s13762-018-2087-y | |
dc.relation.references | Kim, H. J., y Kim, H. J. (2017). particles: what factors do we need to consider?. Letters in applied microbiology, 64(2), 111-123. https://doi.org/10.1111/lam.12695 | |
dc.relation.references | Knob, A., Izidoro, S. C., Lacerda, L. T., Rodrigues, A., y de Lima, V. A. (2020). A novel lipolytic yeast Meyerozyma guilliermondii: efficient and low-cost production of acid and promising feed lipase using cheese whey. Biocatalysis and Agricultural Biotechnology, 24, 101565. https://doi.org/10.1016/j.bcab.2020.101565 | |
dc.relation.references | Kosiorowska, K.E., Polomska, X., Wang, G., Borodina, I., y Mironczuk, A.M. (2021). Efficient biodegradation of aliphatic polyester by genetically engineered strains of the yeast Yarrowia lipolytica. International Biodeterioration & Biodegradation. https://doi.org/10.1016/j.ibiod.2021.105232. | |
dc.relation.references | Kouker, G., y Jaeger, K. E. (1987). Specific and sensitive plate assay for bacterial lipases. Applied and environmental microbiology, 53(1), 211-213. https://doi.org/10.1128/aem.53.1.211-213.1987 | |
dc.relation.references | Krijger, J.J., Baumann, J., Wagner, M., Schulze, K., Reinsch, C., Klose, T., Onuma, O.F., Simon, C., Behrens, S.E. y Breunig, K.D. (2012). A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb. Cell Factories 11, 112. https://doi.org/10.1186/1475- 2859-11-112. | |
dc.relation.references | Kumar, A., Dhar, K., Kanwar, S. S., y Arora, P. K. (2016). Lipase catalysis in organic solvents: advantages and applications. Biological Procedures Online, 18(1). doi:10.1186/s12575-016-0033-2 | |
dc.relation.references | Kumar, R., Sharma, A., Kumar, A., y Singh, D. (2012). Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Appl Sci J, 16(7), 940-948. ISSN : 1818-4952. Recuperado de https://www.cabdirect.org/cabdirect/abstract/20123116154 | |
dc.relation.references | Kyte J., y Doolittle R. (1982). A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 157, 105-132. https://doi.org/10.1016/0022-2836(82)90515-0 | |
dc.relation.references | Labrou, N.E. (2014). Protein Purification: An Overview. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_1. | |
dc.relation.references | Lan, D.-M., Yang, N., Wang, W.-K., Shen, Y.-F., Yang, B., y Wang, Y.-H. (2011). A Novel Cold-Active Lipase from Candida albicans: Cloning, Expression and Characterization of the Recombinant Enzyme. International Journal of Molecular Sciences, 12(6), 39503965. doi:10.3390/ijms12063950 | |
dc.relation.references | Landgraf, B. J., Biotechnology: Disulfide Bond Formation in Escherichia coli. Escherichia Coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications | |
dc.relation.references | Larsen, M. W., Bornscheuer, U. T., y Hult, K. (2008). Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein expression and purification, 62(1), 90-97. https://doi.org/10.1016/j.pep.2008.07.012 | |
dc.relation.references | Lee, G. C., Lee, L. C., Sava, V., & Shaw, J. F. (2002). Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Biochemical journal, 366(2), 603-611. https://doi.org/10.1042/bj20020404 | |
dc.relation.references | Lee, L. C., Yen, C. C., Malmis, C. C., Chen, L. F., Chen, J. C., Lee, G. C., y Shaw, J. F. (2011). Characterization of codon-optimized recombinant Candida rugosa lipase 5 (LIP5). Journal of agricultural and food chemistry, 59(19), 10693-10698. dx.doi.org/10.1021/jf202161a | |
dc.relation.references | Lee, L. P., Karbul, H. M., Citartan, M., Gopinath, S. C., Lakshmipriya, T., y Tang, T. H. (2015). Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. BioMed research international. Vol.2015. pp. 1-9. https://doi.org/10.1155/2015/820575. | |
dc.relation.references | Lee, S. Y., Lee, D. Y., & Kim, T. Y. (2005). Systems biotechnology for strain improvement. Trends in biotechnology, 23(7), 349-358. https://doi.org/10.1016/j.tibtech.2005.05.003 | |
dc.relation.references | Letunic, I., Doerks, T., y Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic acids research, 40(D1), D302-D305. https://doi.org/10.1093/nar/gkr931 | |
dc.relation.references | Li, N., y Zong, M.H. (2010). Lipases from the genus Penicillium: production, purification, characterization and applications. J Mol Catalysis B: Enzym.;66(12):4354. https://doi.org/10.1016/j.molcatb.2010.05.004 | |
dc.relation.references | Liang, Z., Deng, M., Zhang, Z., Li, M., Zhou, S., Zhao, Z., ... y Li, F. (2021). One-step construction of a food-grade expression system based on the URA3 gene in Kluyveromyces lactis. Plasmid, 116, 102577. https://doi.org/10.1016/j.plasmid.2021.102577 | |
dc.relation.references | Lloyd, A. T., y Sharp, P. M. (1993). Synonymous codon usage in Kluyveromyces lactis. Yeast, 9(11), 1219-1228. https://doi.org/10.1002/yea.320091109 | |
dc.relation.references | Lo, C. F., Yu, C. Y., Kuan, I. C., y Lee, S. L. (2012). Optimization of lipase production by Burkholderia sp. using response surface methodology. International journal of molecular sciences, 13(11), 14889-14897. https://doi.org/10.3390/ijms131114889 | |
dc.relation.references | López-Alvarez E.M. (2019). Métodos para determinar la viabilidad celular con aplicación en odontología. Trabajo de grado. Universidad de San Martin de Porres. Lima, Perú. | |
dc.relation.references | Ma, H., Kunes, S., Schatz, P.J., y Botstein, D., (1987). Plasmid construction by homologous recombination in yeast. Gene 58 (23), 201216. https://doi.org/10.1016/0378- 1119(87)90376-3. | |
dc.relation.references | Mancheño, J. M., Pernas, M. A., Martnez, M. J., Ochoa, B., Rúa, M. L., y Hermoso, J. A. (2003). Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97 Å resolution. Journal of Molecular Biology, 332(5), 1059-1069. https://doi.org/10.1016/j.jmb.2003.08.005 | |
dc.relation.references | Martínez-Corona, MC.R. (2019). Caracterización bioquímica de las lipasas extracelulares de Kluyveromyces marxianus expresadas en un sistema heteróloga. Tesis de doctorado. Universidad Michoacana de San Nicolas de Hidalgo. Morelia, Michoacan. Recuperado de http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/3714 | |
dc.relation.references | Bioinformatic characterization of the extracellular lipases from Kluyveromyces marxianus. Yeast, 37(1), 149-162. https://doi.org/10.1002/yea.3449 | |
dc.relation.references | Mattanovich, D., Branduardi, P., Dato, L., Gasser, B., Sauer, M., y Porro, D. (2012). Recombinant protein production in yeasts. Recombinant gene expression, 329-358. https://doi.org/10.1007/978-1-61779-433-9_17 | |
dc.relation.references | Mazola, Y., Chinea, G., y Musacchio, A. (2011). Glycosylation and Bioinformatics: current status for glycosylation prediction tools. Biotecnología Aplicada. Vol. 28, No.1. pp. 6-12. | |
dc.relation.references | Medina-Pinto, S. M. (2021). Biodegradación de aceites y grasas del remojo de curtiduría del parque industrial de Río Seco-Arequipa (PIRS), mediante cepas fúngicas lipolíticas. Tesis de pregrado. Universidad Nacional de San Agustín de Arequipa. Arequipa, Perú. Recuperado de http://hdl.handle.net/20.500.12773/13449 | |
dc.relation.references | Medrano, M. D. C., y Melchor, O. Y. L. (2018). Diseño, validación y aplicación de un set de primers para la detección de Hepatitis viral A. Avances de Investigación en Inocuidad de Alimentos, 1(1). | |
dc.relation.references | Mehta, A., Bodh, U., y Gupta, R. (2021). Fungal lipases: a review. Journal of Biotech Research, 8, 58. ISSN: 1944-3285 | |
dc.relation.references | Menden, A., Crynen, S., Mathura, V., Paris, D., Crawford, F., Mullan, M. y Ait-Ghezala, G. (2021). Novel, natural allosteric inhibitors and enhancers of Candida rugosa lipase activity. Bioorganic Chemestry. 109. https://doi.org/10.1016/j.bioorg.2021.104732 | |
dc.relation.references | Meunchan, M., Michely, S., Devillers, H., Nicaud, J. M., Marty, A., y Neuvéglise, C. (2015). Comprehensive analysis of a yeast lipase family in the Yarrowia clade. PLoS One, 10(11), e0143096. https://doi.org/10.1371/journal.pone.0143096 | |
dc.relation.references | Mihelj, P. (2018). Estudios estructurales y caracterización fisicoquímica" in sílico" de la proteína caltrin II de ratón (Bachelor's thesis). Tesis de pregrado. Universidad Nacional de Córdoba. Recuperado de http://hdl.handle.net/11086/6721 | |
dc.relation.references | Miller, S.A., Dykes, D.D., y Polesky, H.F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Researche 16(3) pp. 1215. | |
dc.relation.references | Mobarak-Qamsari, E., Kasra-Kermanshahi, R., y Moosavi-Nejad, Z. (2011). Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iranian journal of microbiology, 3(2), 92. | |
dc.relation.references | Mokhtar, N. F., Abd. Rahman, R. N. Z. R., Muhd Noor, N. D., Mohd Shariff, F., y Mohamad Ali, M. S. (2020). The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts, 10(7), 744. doi:10.3390/catal10070744 | |
dc.relation.references | Montenegro Bacca, Y. A., Castillo-Barrera, M.F. y Reyes-Barrios, L.H. (2020). Estructuración de una metodología para la expresión de péptidos y proteínas por medio de la levadura Kluyveromyces lactis. Universidad de los Andes. Bogotá, Colombia- pp 1-19. | |
dc.relation.references | Morka, K., Pietruszka, J., y Zu Berstenhorst, S. M. (2014). Comparative expression of lipase CAL-A in the yeasts Saccharomyces cerevisiae, Kluyveromyces lactis and Hansenula polymorpha to investigate a possible host influence. Journal of biotechnology, 191, 176-186. https://doi.org/10.1016/j.jbiotec.2014.08.023. | |
dc.relation.references | Nakamura, T., Nagasawa, T., Yu, F., Watanabe, I., y Yamada, H. (1994). Characterization of a novel enantioselective halohydrin hydrogen-halide-lyase. Applied and environmental microbiology, 60(4), 1297-1301. https://doi.org/10.1128/aem.60.4.1297-1301.1994 | |
dc.relation.references | Nakase, T., Itoh, M., Suzuki, M., Komagata, K., y Kodama, T. (1988). Candida palmioleophila sp. nov., a yeast capable of assimilating crude palm oil, formerly identified as Torulopsis candida. The Journal of general and applied microbiology, 34(6), 493-498. https://doi.org/10.2323/jgam.34.493 | |
dc.relation.references | NEB. (2017). K. lactis Protein Expression Kit. Manual instruction. New England Biolab. Recuperado de https://intl.neb.com/-/media/nebus/files/manuals/manuale1000.pdf?rev=fe7761e178444915b0203268cae4e 813&hash=2E5919AAD86AFE1CA6E6C3416EBDCAD8 | |
dc.relation.references | Nguyen, M. T., Krupa, M., Koo, B. K., Song, J. A., Vu, T. T. T., Do, B. H., ... y Choe, H. (2016). Prokaryotic soluble overexpression and purification of human VEGF165 by fusion to a maltose binding protein tag. PloS one, 11(5), e0156296. https://doi.org/10.1371/journal.pone.0156296 | |
dc.relation.references | Nielsen, J. (2001). Metabolic engineering. Applied microbiology and biotechnology, 55(3), 263-283. https://doi.org/10.1007/s002530000511 | |
dc.relation.references | Nielsen, J. (2013). Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered, 4(4), 207-211. https://doi.org/10.4161/bioe.22856 | |
dc.relation.references | Nitschke, M., Costa, S. G., Haddad, R., G. Gonçalves, L. A., Eberlin, M. N., y Contiero, J. (2005). Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnology progress, 21(5), 1562- 1566. https://doi.org/10.1021/bp050198x | |
dc.relation.references | Oliveira, A. C. D., Fernandes, M. L., y Mariano, A. B. (2014). Production and characterization of an extracellular lipase from Candida guilliermondii. Brazilian Journal of Microbiology, 45, 1503-1511. https://doi.org/10.1590/S1517- 83822014000400047 | |
dc.relation.references | Ollis, DL., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F. y Franken, SM. (1992). The alpha/beta hydrolase fold. Protein Eng. 5:197221. | |
dc.relation.references | Pandey, R., y Veeranki, V.D. (2018). Optimizing secretory expression of recombinant human interferon gamma from Kluyveromyces lactis. Prep. Biochem. Biotechnol. 48 (2), 202212. https://doi.org/10.1080/10826068.2018.1425706. | |
dc.relation.references | Park, S. H., Kim, S. J., Park, S., y Kim, H. K. (2019). Characterization of organic solventtolerant lipolytic enzyme from Marinobacter lipolyticus isolated from the Antarctic Ocean. Applied biochemistry and biotechnology, 187(3), 1046-1060. https://doi.org/10.1007/s12010-018-2865-5 | |
dc.relation.references | Patil, K., Chopda, M., y Mohajan, R. (2011). Lipase Biodiversity. Indian Journal of Science and Technology, 4(8), 971-982.http://dx.doi.org/10.17485/ijst/2011/v4i8/30913 | |
dc.relation.references | Pedroza, C., Romero, M. y Orduz, S. (2017). Actividad lipolítica de microorganismos aislados de aguas residuales contaminadas con grasas. Biotecnología en el Sector Agropecuario y Agroindustrial. Vol 15 N° 1. Pp.36- 44. http://dx.doi.org/10.18684/BSAA(15)36-44 | |
dc.relation.references | Peil, G. H., KuSS, A. V., Rave, A. F., VillArreAl, J. P., Hernandes, Y. M., y Nascente, P. S. (2016). Bioprospecting of lipolytic microorganisms obtained from industrial effluents. Anais da Academia Brasileira de Ciências, 88, 1769-1779. https://doi.org/10.1590/0001-3765201620150550 | |
dc.relation.references | Pellegrini, M. (2001). Computational methods for protein function analysis. Current Opinion in Chemical Biology, 5(1), 46-50. https://doi.org/10.1016/S1367-5931(00)00165-4 | |
dc.relation.references | Petersen, M. T. N., Fojan, P., y Petersen, S. B. (2001). How do lipases and esterases work: the electrostatic contribution. Journal of biotechnology, 85(2), 115-147. https://doi.org/10.1016/S0168-1656(00)00360-6 | |
dc.relation.references | Petersen, T. N., Brunak, S., von Heijne, G., y Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785786. https://doi.org/10.1038/nmeth.1701 | |
dc.relation.references | Potrzebowski, M. J., Grossmann, G., Blaszczyk, J., Wieczorek, M. W., Sieler, J., Knopik, P., y Komber, H. (1994). X-ray and solid state NMR studies of bis (5, 5-dimethyl-2- thioxo-1, 3, 2-dioxaphosphorinan-2-yl) disulfide and diselenide. Inorganic Chemistry, 33(21), 4688-4695. https://doi.org/10.1021/ic00099a019 | |
dc.relation.references | Potvin, G., Ahmad, A., y Zhang, Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochemical Engineering Journal, 64, 91-105. https://doi.org/10.1016/j.bej.2010.07.017 | |
dc.relation.references | Rabbani, M., Reza Bagherinejad, M., MirMohammad Sadeghi, H., Samsam Shariat, Z., Etemadifar, Z., Fatemeh, M. y Zaghian, S. (2013). Isolation and characterization of novel thermophilic lipase-secreting bacteria. Brazilian Journal of Microbiology, 44(4), 11131119. https://doi.org/10.1590/S1517-83822013000400013 | |
dc.relation.references | Rabie, A. M. (1989). Acceleration of blue cheese ripening by cheese slurry and extracellular enzymes of Penicillium roqueforti. Le Lait, 69(4), 305-314. https://doi.org/10.1051/lait:1989424 | |
dc.relation.references | Rajesh, S., Crandall, C., Schneiderman, S., y Menkhaus, T. J. (2018). Cellulose-graftpolyethyleneamidoamine anion-exchange nanofiber membranes for simultaneous protein adsorption and virus filtration. ACS Applied Nano Materials, 1(7), 3321-3330. https://doi.org/10.1021/acsanm.8b00519 | |
dc.relation.references | Ray, A. (2012). Application of lipase in industry. Asian Journal of Pharmacy and technology, 2(2), 33-37. ISSN- 22315713 | |
dc.relation.references | Read, J. D., Colussi, P. A., Ganatra, M. B., y Taron, C. H. (2007). Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to highfrequency formation of multicopy strains. Applied and environmental microbiology, 73(16), 5088-5096. https://doi.org/10.1128/AEM.02253-06 | |
dc.relation.references | Renge, V.C., Khedkar, S.V., y Nandurkar, N.R., Enzyme synthesis by fermentation method., A review. Sci. Revs. Chem. Commun, Vol. 2, No. 4, 2012, pp. 585-590. | |
dc.relation.references | Rincón, L.J., Agualimpia, B. y Zafra, G. (2018). Differential protein profiles of the lipolytic yeast Candida palmioleophila under different growth conditions. Chemical engineering transactions. Vol. 64. Pp. 343-348. doi:10.3303/cet1864058. | |
dc.relation.references | Rocha, S. N., Abrahão-Neto, J., Cerdán, M. E., Gombert, A. K., y González-Siso, M. I. (2011). Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Applied microbiology and biotechnology, 89(2), 375-385. https://doi.org/10.1007/s00253-010-2869-8 | |
dc.relation.references | Rodríguez-Mateus Z., Agualimpia B., y Zafra G. (2016). Isolation and Molecular Characterization of Microorganisms with Potential for the Degradation of Oil and Grease from Palm Oil Refinery Wastes. Chemical Engineering Transactions, 49, 517-522. DOI:10.3303/CET1649087 | |
dc.relation.references | Rodríguez-Mateus Z., Vera Pacheco K., y Zafra G. (2018), Molecular detection and characterization of novel lipase genes of the lipolytic yeast Candida palmioleophila, Chemical Engineering Transactions, 64, 349-354.DOI: 10.3303/CET1864059 | |
dc.relation.references | Romanos, M. A., Scorer, C. A., y Clare, J. J. (1992). Foreign gene expression in yeast: a review. Yeast, 8(6), 423-488. | |
dc.relation.references | Romero-Ormazabal, Ó. (2014). Modificación química dirigida de lipasas en fase sólida. Tesis de doctorado. Universidad Autónoma de Madrid. Madrid, España. Recuperado de http://hdl.handle.net/10486/660286 | |
dc.relation.references | Rosa, J. C. C., Colombo, L. T., Alvim, M. C. T., Avonce, N., Van Dijck, P., y Passos, F. M. L. (2013). Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Microbial Cell Factories, 12(1), 1-13. https://doi.org/10.1186/1475-2859-12-59 | |
dc.relation.references | Rosero-Delgado, E.A. y Pineda-Insuasti, J.A.(2020). Enzimas lipasas con potencialidades para la aplicación en la industria alimenticia: caso suero de leche. Rev. Biorrefinería. Vol.3. No.3. pp. 35-40. ISSN: 2602-8530. | |
dc.relation.references | Röttig, A., Wenning, L., Bröker, D., y Steinbüchel, A. (2010). Fatty acid alkyl esters: perspectives for production of alternative biofuels. Applied microbiology and biotechnology, 85(6), 1713-1733. https://doi.org/10.1007/s00253-009-2383-z | |
dc.relation.references | Roy, A., Kucukural, A., y Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols, 5(4), 725-738. https://doi.org/10.1038/nprot.2010.5 | |
dc.relation.references | Sambrook, J., Fritsch, E. F., y Maniatis, T. (1989). Molecular cloning: a laboratory manual (No. Ed. 2). Cold spring harbor laboratory press. ISBN : 9780879693091. Recuperado de https://www.cabdirect.org/cabdirect/abstract/19901616061. | |
dc.relation.references | Sandoval Pineda, J. F., Ochoa Corona, F. M., y Torres Rojas, E. (2017). Evaluación de diferentes métodos de extracción de ARN a partir del hongo nativo Xylaria sp. Revista Colombiana de Biotecnología, 19(1), 42-52. https://doi.org/10.15446/rev.colomb.biote.v19n1.57114 | |
dc.relation.references | Saraç, N., y Ugur, A. (2016). A green alternative for oily wastewater treatment: lipase from Acinetobacter haemolyticus NS02-30. Desalination and Water Treatment, 57(42), 19750-19759. https://doi.org/10.1080/19443994.2015.1106346 | |
dc.relation.references | Sargsyan, K., Grauffel, C. y Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comp. 13, pp. 1518-1524. DOI: 10.1021/acs.jctc.7b00028 | |
dc.relation.references | Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., y Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology progress, 34(1), 5-28. https://doi.org/10.1002/btpr.2581 | |
dc.relation.references | Schmidt, A., Forne, I., y Imhof, A. (2014). Bioinformatic analysis of proteomics data. BMC systems biology, 8(2), 1-7. https://doi.org/10.1186/1752-0509-8-S2-S3 | |
dc.relation.references | Schofield, D. A., Westwater, C., Warner, T., y Balish, E. (2005). Differential Candida albicans lipase gene expression during alimentary tract colonization and infection. FEMS Microbiology Letters, 244(2), 359-365. https://doi.org/10.1016/j.femsle.2005.02.015 | |
dc.relation.references | Sethi, B. K., Nanda, P. K., y Sahoo, S. (2016). Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. brazilian journal of microbiology, 47, 143-149. https://doi.org/10.1016/j.bjm.2015.11.026 | |
dc.relation.references | Shariff, F. M., Rahman, R. N. Z. R. A., Basri, M., y Salleh, A. B. (2011). A newly isolated thermostable lipase from Bacillus sp. International journal of molecular sciences, 12(5), 2917-2934. https://doi.org/10.3390/ijms12052917 | |
dc.relation.references | Sharma, S., y Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal. https://doi.org/10.1155/2014/625258. | |
dc.relation.references | Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp. Journal of Industrial Microbiology and Biotechnology, 42(10), 1309-1317. https://doi.org/10.1007/s10295-015-1655-0. | |
dc.relation.references | Silva, F. F., Gonçalves, D., y Lopes, D. (2020). The use of bioinformatics tools to characterize a hypothetical protein from Penicillium rubens. Genet Mol Res, 19(2), 1- 18. http://dx.doi.org/10.4238/gmr18574 | |
dc.relation.references | Skagerlind, P., Gibson, K., Wenger, K., Hatzack, F., Nilsson, L. D., Salmon, S., ... y Xu, H. (2007). Industrial Enzymes. White Biotechnology, 105, 59. doi:10.1007/10_2006_039. | |
dc.relation.references | Spohner, S.C., Schaum, V., Quitmann, H., y Czermak, P. (2016). Kluyveromyces lactis: an emerging tool in biotechnology. J. Biotechnol. 222, 104116. https://doi.org/10.1016/j.jbiotec.2016.02.023. | |
dc.relation.references | Stavrou, A. A., Lackner, M., Lass-Flörl, C., y Boekhout, T. (2019). The changing spectrum of Saccharomycotina yeasts causing candidemia: phylogeny mirrors antifungal susceptibility patterns for azole drugs and amphothericin B. FEMS Yeast Research. doi:10.1093/femsyr/foz037 | |
dc.relation.references | Stehr, F., Felk, A., Gácser, A., Kretschmar, M., Mähnß, B., Neuber, K., y Schäfer, W. (2004). Expression analysis of the lipase gene family during experimental infections and in patient samples. FEMS Yeast Research, 4(4-5), 401-408. https://doi.org/10.1016/S1567-1356(03)00205-8 | |
dc.relation.references | Stoesser, G., Moseley, M. A., Sleep, J., McGowran, M., Garcia-Pastor, M., y Sterk, P. (1998). The EMBL nucleotide sequence database. Nucleic Acids Research, 26(1), 8- 15. https://doi.org/10.1093/nar/29.1.17 | |
dc.relation.references | Su, X.; Schmitz, G.; Zhang, M.; Mackie, R. I. y Cann, I. K. (2012). Chapter one- Heterologous gene expression in filamentous fungi. In: GADD, G. M.; SARIASLANI, S. Advances in Applied Microbiology. USA: Elsevier. p 1-61. https://doi.org/10.1016/B978-0-12-394382-8.00001-0 | |
dc.relation.references | Subroto, E., Indiarto, R., Pangawikan, A. D., Huda, S., y Yarlina, V. P. (2020). Characteristics, immobilization, and application of Candida rugosa lipase. Food Research, 4(5), 1391-1401. https://doi.org/10.26656/fr.2017.4(5).060 | |
dc.relation.references | Sugimura, Y., Fukunaga, K., Matsuno, T., Nakao, K., Goto, M., y Nakashio, F. (2000). A study on the surface hydrophobicity of lipases. Biochemical Engineering Journal, 5(2), 123128. doi:10.1016/s1369-703x(99)00072-8 | |
dc.relation.references | Sugita, T., y Nakase, T. (1999). Non-universal Usage of the Leucine CUG Codon and the Molecular Phylogeny of the Genus Candida. Systematic and Applied Microbiology, 22(1), 7986. doi:10.1016/s0723-2020(99)80030-7 | |
dc.relation.references | Swinkels, B. W., van Ooyen, A. J., y Bonekamp, F. J. (1993). The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek, 64(2), 187-201. https://doi.org/10.1007/BF00873027 | |
dc.relation.references | Syal, P., y Gupta, R. (2017). Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: substrate specificity, kinetic comparison, and enantioselectivity. Biotechnology and Applied Biochemistry, 64(6), pp 851-861. https://doi.org/10.1002/bab.1542 | |
dc.relation.references | Talon, R., Montel, M. C., y Berdague, J. L. (1996). Production of flavor esters by lipases of Staphylococcus warneri and Staphylococcus xylosus. Enzyme and microbial technology, 19(8), pp 620-622. https://doi.org/10.1016/S0141-0229(96)00075-0 | |
dc.relation.references | Tamshybay, A. (2020). Features of Kluyveromyces lactis expression system. In European Scientific Conference (pp. 15-17).Recuperado de https://naukaip.ru/wpcontent/ uploads/2020/10/%D0%9C%D0%9A-897.pdf#page=15 | |
dc.relation.references | Tan, J. S., Abbasiliasi, S., Ariff, A. B., Ng, H. S., Bakar, M. H. A., y Chow, Y. H. (2018). Extractive purification of recombinant thermostable lipase from fermentation broth of Escherichia coli using an aqueous polyethylene glycol impregnated resin system. 3 Biotech, 8(6), 1-7. https://doi.org/10.1007/s13205-018-1295-y | |
dc.relation.references | Tan, N. N., y Diep, C. N. (2017). Isolation and identification of lipid-degrading yeast from wastewater of canteens and restaurants in Ninh Kieu district, Can Tho city. Journal of Science, 7, 27-32. doi: 10.22144/ctu.jen.2017.045 | |
dc.relation.references | Tapia-Tussell R, Lappe P, Ulloa M, Quijano-Ramayo A, Cáceres-Farfán M, Larqué- Saavedra A, y Perez-Brito D. (2006). A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Mol Biotechnol. 33(1):67-70. doi: 10.1385/MB:33:1:67. PMID: 16691008. | |
dc.relation.references | Tecelão C, Guillén M, Valero F, y Ferreira-Dias S. (2012). Immobilized heterologous Rhizopus oryzae lipase: a feasible biocatalyst for the production of human milk fat substitutes. Biochem Eng J.;67:10410. https://doi.org/10.1016/j.bej.2012.06.001 | |
dc.relation.references | Ten Brink HB, Flöter E, Lawrence CF, Huizinga H, Zuiderwijk MA. (2013). Enzymatic modifcation of triglyceride fats. United States patent US 8,431,370. | |
dc.relation.references | Unal, E. S., Zhao, R., Qiu, A., y Goldman, I. D. (2008). N-linked glycosylation and its impact on the electrophoretic mobility and function of the human proton-coupled folate transporter (HsPCFT). Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(6), 1407-1414. https://doi.org/10.1016/j.bbamem.2008.03.009 | |
dc.relation.references | Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., y Leunissen, J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic acids research, 35(suppl_2), W71-W74. https://doi.org/10.1093/nar/gkm306 | |
dc.relation.references | Uppenberg, J., Hansen, M. T., Patkar, S., y Jones, T. A. (1994). The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, 2(4), 293-308. https://doi.org/10.1016/S0969-2126(00)00031-9 | |
dc.relation.references | Valero, F. (2018). Recent advances in Pichia pastoris as host for heterologous expression system for lipases: a review. Methods Mol. Biol. 1835, 205216. doi: 10.1007/978-1- 4939-8672-9_11 | |
dc.relation.references | Van den Berg, J. A., van der Laken, K. J., van Ooyen, A. J., Renniers, T. C., Rietveld, K., Schaap, A., ... y Shuster, J. R. (1990). Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/technology, 8(2), 135-139. https://doi.org/10.1038/nbt0290-135 | |
dc.relation.references | Van der Walt, J. P. (1965). The emendation of the genus Kluyveromyces vd Walt. Antonie van Leeuwenhoek, 31(1), 341-348. https://doi.org/10.1007/BF02045913 | |
dc.relation.references | Van Ooyen, A.J., Dekker, P., Huang, M., Olsthoorn, M.M., Jacobs, D.I., Colussi, P.A., y Taron, C.H., (2006). Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res. 6 (3), 381392. https://doi.org/10.1111/j.1567- 1364.2006.00049.x. | |
dc.relation.references | Van Tassel, L., Moilanen, A., y Ruddock, L. W. (2020). Efficient production of wild-type lipase B from Candida antarctica in the cytoplasm of Escherichia coli. Protein expression and purification, 165, 105498. https://doi.org/10.1016/j.pep.2019.105498 | |
dc.relation.references | Vaquero-Morales, M. E. (2016). Expresión heteróloga, caracterización y aplicaciones biotecnológicas de la esterol esterasa-lipasa de" Ophiostoma piceae" y de otras enzimas seleccionadas de genomas fúngicos. Ene, 12, 33. Recuperado de https://eprints.ucm.es/id/eprint/35264/1/T36772.pdf | |
dc.relation.references | Verma, S., Meghwanshi, G. K., y Kumar, R. (2021). Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 182, 23-36. https://doi.org/10.1016/j.biochi.2020.12.027 | |
dc.relation.references | Vieira Gomes, A., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., y Parachin, N. (2018). Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms, 6(2), 38. doi:10.3390/microorganisms6020038 | |
dc.relation.references | Walsh, G. (2007). Pharmaceutical Biotechnology Concepts and Applications. England: John Wiley & Sons Ltd. ISBN:978-0-470-01245-1. Recuperado de https://books.google.com.co/books?hl=es&lr=&id=pkQYi_J2Tq8C&oi=fnd&pg= PR15&dq=Walsh,+G.+(2007).+Pharmaceutical+Biotechnology+Concepts+and+ Applications.+England:+John+Wiley+%26+Sons+Ltd.&ots=tycMvhg_yl&sig=5y jzeZy1N2JyiFgx02ItghJhRxk&redir_esc=y#v=onepage&q&f=false | |
dc.relation.references | Wancura, J. HC., Tres, M. V., Jahn, S. L., y de Oliveira, J. V. (2020). Lipases in liquid formulation for biodiesel production: Current status and challenges. Biotechnology and Applied Biochemistry, 67(4), 648-667. https://doi.org/10.1002/bab.1835 | |
dc.relation.references | Wang, K. (2020). Kluyveromyces lactis as an alternative host for the expression of phageencoded endolysin genes. Tesis de Maestría. University of Manitoba. Winnipeg, Canadá. Pp 1-138. Recuperado de http://hdl.handle.net/1993/34998 | |
dc.relation.references | Wang, W. L., Sun, P. L., Kao, C. F., Li, W. T., Cheng, I. J., y Yu, P. H. (2021). Disseminated Candidiasis and Candidemia Caused by Candida palmioleophila in a Green Sea Turtle (Chelonia mydas). Animals, 11(12), 3480. https://doi.org/10.3390/ ani11123480 | |
dc.relation.references | Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; y Bordoli, L. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, 296303. https://doi.org/10.1093/nar/gky427 | |
dc.relation.references | Wickerham, L. J., y Burton, K. A. (1956). Hybridization studies involving Saccharomyces lactis and Zygosaccharomyces ashbyi. Journal of Bacteriology, 71(3), 290-295. doi: 10.1128/jb.71.3.290-295.1956 | |
dc.relation.references | Wiederstein, M. y Sippl, M.J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 35(Web Server issue), pp. 407-410. https://doi.org/10.1093/nar/gkm290 | |
dc.relation.references | Xie, Y., An, J., Yang, G., Wu, G., Zhang, Y., Cui, L., y Feng, Y. (2014). Enhanced enzyme kinetic stability by increasing rigidity within the active site. Journal of Biological Chemistry, 289(11), 7994-8006. https://doi.org/10.1074/jbc.M113.536045 | |
dc.relation.references | Xie, Y., Han, X., y Miao, Y. (2018). An effective recombinant protein expression and purification system in Saccharomyces cerevisiae. Current protocols in molecular biology, 123(1), e62. https://doi.org/10.1002/cpmb.62 | |
dc.relation.references | Yamaguchi, S., y Mase, T. (1991). High-yield synthesis of monoglyceride by mono-and diacylglycerol lipase from Penicillium camembertii U-150. Journal of fermentation and bioengineering, 72(3), pp. 162-167. https://doi.org/10.1016/0922- 338X(91)90210-8 | |
dc.relation.references | Yang J., Anishchenko I., Park H., Peng Z., Ovchinnikov S., y Baker D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences, 117(3), 1496-1503. doi:10.1073/pnas.1914677117 | |
dc.relation.references | Yang, J., Roy, A., y Zhang, Y. (2013). Proteinligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 25882595. doi:10.1093/bioinformatics/btt447 | |
dc.relation.references | Yang, J., y Zhang, Y. (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic acids research, 43(W1), W174-W181. https://doi.org/10.1093/nar/gkv342 | |
dc.relation.references | Yang, Q., Zhang, H., Li, X., Wang, Z., Xu, Y., Ren, S. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresource Technology, 129, 264273. doi:10.1016/j.biortech.2012.11 | |
dc.relation.references | Yuan, D., Lan, D., Xin, R., Yang, B., y Wang, Y. (2014). Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649. International Journal of Molecular Sciences, 15(6), 1055410566. doi:10.3390/ijms150610554. | |
dc.rights | Derechos Reservados - Universidad de Santander, 2022. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Lipasa extracelular | spa |
dc.subject.proposal | Candida palmioleophila | other |
dc.subject.proposal | Expresión heteróloga | spa |
dc.subject.proposal | Kluyveromyces lactis | other |
dc.subject.proposal | Extracellular lipase | eng |
dc.subject.proposal | Heterologous expression | |
dc.title | Estudio de Secuencias Genéticas Asociadas a Lipasas Extracelulares de Candida Palmioleophila Para su Expresión en Kluyveromyces Lactis | spa |
dc.title.translated | Study of genetic sequences associated with extracellular lipases of Candida palmioleophila for their expression in Kluyveromyces lactis | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_71e4c1898caa6e32 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/submittedVersion | |
dspace.entity.type | Publication |
Archivos
Paquete original
1 - 3 de 3
- Nombre:
- Estudio_de_Secuencias_Genéticas_Asociadas_a_Lipasas_Extracelulares_de_Candida.pdf
- Tamaño:
- 9.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Resultadao URKUND 1_WVQ.pdf
- Tamaño:
- 1.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: