Publicación: Identificación de Genes de Lipasas Extracelulares en Candida Palmioleophila y su Relación con Genes Lip2 y Lip6
Identificación de Genes de Lipasas Extracelulares en Candida Palmioleophila y su Relación con Genes Lip2 y Lip6
dc.contributor.advisor | Valdivieso Quintero, Wilfredo | |
dc.contributor.author | Hernández Garnica, Esperanza | |
dc.date.accessioned | 2021-09-06T16:20:09Z | |
dc.date.available | 2021-09-06T16:20:09Z | |
dc.date.issued | 2021-08-24 | |
dc.description | Digital | spa |
dc.description.abstract | El objetivo del presente estudio fue identificar secuencias genéticas ortólogas de lipasas extracelulares LIP2 y LIP6 presentes en microorganismos modelo de Candida palmioleophila (Nakase&Itoh 8040), sin embargo, durante el desarrollo de este estudio se incluyó la identificación de secuencias genéticas ortólogas de lipasas extracelulares LIP1. Se estableció una estrategia experimental que incluyó el uso de oligonucleótidos previamente reportados y nueve parejas de oligonucleótidos diseñados (LIP1, LIP2, LIP6), para las amplificaciones se utilizó tanto ADNg como ADNc. Los 61 amplificados obtenidos (14 de C. albicans y 47 de C. palmioleophila) fueron sometidos a secuenciación, de los cuales se obtuvieron 87 secuencias (74 a partir de ADNg y 13 a partir de ADNc), el análisis de los fragmentos depurados para C. palmioleophila permitió identificar tres amplificados (Cp9, Cp39 y Cp47) que presentaron algún grado de homología con secuencias genéticas asociadas a lipasas en GenBank y de estas secuencias genéticas, se obtuvieron tres marcos de lectura (ORF) con algún grado de homología a αβ hidrolasa o lipasas de levaduras en BLASTp, Pfam e InterPro. Las secuencias de nucleótidos Cp9, Cp39, Cp47 y sus respectivos ORF fueron sometidos a un análisis filogenético. Adicionalmente este trabajo permitió obtener información nueva sobre secuencias de ADN putativas para C. palmioleophila, que pudieron ser reportadas en GenBank, permitiendo ampliar el conocimiento que se tiene de este microorganismo. | spa |
dc.description.abstract | The objective of the present study was to identify orthologous genetic sequences of extracellular lipases LIP2 and LIP6 present in model microorganisms of Candida palmioleophila (Nakase & Itoh 8040), however, during the development of this study the identification of orthologous genetic sequences of extracellular lipases LIP1 was included. An experimental strategy was established that included the use of previously reported oligonucleotides and nine pairs of designed oligonucleotides (LIP1, LIP2, LIP6), both gDNA and cDNA were used for the amplifications. The 61 amplified obtained (14 from C. albicans and 47 from C. palmioleophila) were subjected to sequencing, of which 87 sequences were obtained (74 from gDNA and 13 from cDNA), the analysis of the purified fragments for C. palmioleophila allowed the identification of three amplified (Cp9, Cp39 and Cp47) that showed some degree of homology with genetic sequences associated with lipases in GenBank and from these genetic sequences, three open reading frame (ORF) with some degree of homology to yeast αβ hydrolase or lipases were obtained in BLASTp, Pfam and InterPro. The nucleotide sequences Cp9, Cp39, Cp47 and their respective ORF were subjected to phylogenetic analysis. Additionally, this work allowed to obtain new information on putative DNA sequences for C. palmioleophila, which could be reported in GenBank, allowing to broaden the knowledge of this microorganism. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Biotecnología | spa |
dc.description.edition | 1 ed. | spa |
dc.description.tableofcontents | Introducción .................................................................................................................................. 18 1. Problema de Investigación ........................................................................................................ 20 2. Pregunta de Investigación ......................................................................................................... 23 3. Justificación .............................................................................................................................. 24 4. Objetivos ................................................................................................................................... 27 4.1 Objetivo General ................................................................................................................. 27 4.2 Objetivos Específicos .......................................................................................................... 27 5. Marco de Referencial ................................................................................................................ 28 6. Marco Teórico ........................................................................................................................... 31 6.1 Lipasas ................................................................................................................................. 31 6.2 Estructura de las Lipasas ..................................................................................................... 32 6.3 Reacciones Catalizadas por lipasas ..................................................................................... 34 6.4 Aplicaciones Biotecnológicas ............................................................................................. 35 6.5 Microorganismos Productores de Lipasas........................................................................... 37 6.6 Genes Lipasa en Levadura del Género Candida sp ............................................................ 38 6.7 Genes Homólogos, Ortólogos y Parálogos ......................................................................... 40 6.8 Similitud de los Genes Lipasa ............................................................................................. 41 7. Metodología .............................................................................................................................. 45 7.1 Tipo de Estudio ................................................................................................................... 45 7.2 Estrategia Experimental ...................................................................................................... 45 7.3 Microorganismos y Condiciones de Cultivo ....................................................................... 46 7.4 Obtención de ADN Genómico (ADNg) y ADN Complementario (ADNc) ....................... 47 7.4.1 Extracción de ADNg de Levaduras .............................................................................. 47 7.4.2 Extracción de ARN Total ............................................................................................. 48 7.4.3 Obtención de ADNc por Retrotranscripción ................................................................ 50 7.5 Amplificación de Genes de Lipasa Utilizando Oligonucleótidos Previamente Reportados 51 7.6 Diseño de Oligonucleótidos Para Amplificación de Fragmentos de Genes Asociados a Lipasas Extracelulares ............................................................................................................... 53 7.7 Optimización de las Condiciones de PCR para los Oligonucleótidos Diseñados ............... 54 7.8 Secuenciación de Amplicones y Análisis............................................................................ 56 7.9 Análisis de Marcos de Lectura Abierta (ORF).................................................................... 57 7.10 Análisis Filogenético de Secuencias Obtenidas con Similitud a Genes Lipasa ................ 58 8. Resultados y Discusión ............................................................................................................. 59 8.1 Microorganismos y Condiciones de Cultivo ....................................................................... 59 8.2 Obtención de ADN Genómico (ADNg) y ADN Complementario (ADNc) ....................... 59 8.2.1 Obtención de ADNg, Verificación de Calidad y Pureza .............................................. 59 8.2.2 Obtención del ADNc, Verificación de Funcionalidad y Pureza ................................... 60 8.3 Amplificación de Genes Lipasa Utilizando Oligonucleótidos Previamente Reportados .... 62 8.4 Diseño de Oligonucleótidos para Amplificación de Fragmentos de Genes Asociados a Lipasas Extracelulares ............................................................................................................... 65 8.5 Optimización de Condiciones de PCR para los Oligonucleótidos diseñados ..................... 69 8.6 Amplificación de Genes Lipasa Utilizando Oligonucleótidos Diseñados .......................... 71 8.6.1 Amplificación de Genes Lipasa a Partir de ADNg ....................................................... 71 8.6.2 Amplificación de Genes Lipasa a Partir de ADNc ....................................................... 75 8.7 Secuenciación de Amplicones y Análisis............................................................................ 80 8.7.1 Análisis de Secuencias Genéticas Obtenidas a partir de ADNg Utilizando Oligonucleótidos Previamente Reportados ........................................................................... 80 8.7.2 Análisis de Secuencias Genéticas Obtenidas a partir de ADNg Utilizando Oligonucleótidos Diseñados .................................................................................................. 83 8.7.3 Análisis de Secuencias Genéticas Obtenidas a Partir de ADNc Utilizando Oligonucleótidos Diseñados .................................................................................................. 87 8.8 Análisis Filogenético de Secuencias Obtenidas con Similitud a Genes Lipasa .................. 90 9. Conclusiones ............................................................................................................................. 97 10. Recomendaciones ................................................................................................................... 98 Referencias Bibliograficas ............................................................................................................ 99 Apéndices .................................................................................................................................... 110 | spa |
dc.format.extent | 186 p | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.local | T 91.21 H276i | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/5604 | |
dc.language.iso | spa | spa |
dc.publisher | Bucaramanga : Universidad de Santander, 2021 | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas, Naturales y Agropecuarias | spa |
dc.publisher.place | Bucaramanga, Colombia | spa |
dc.publisher.program | Maestría en Biotecnología | spa |
dc.rights | Derechos Reservados - Universidad de Santander, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.proposal | PCR | spa |
dc.subject.proposal | Diseño Primers | spa |
dc.subject.proposal | Genes | spa |
dc.subject.proposal | Lipasa | spa |
dc.subject.proposal | Identificación | spa |
dc.subject.proposal | Design Primers | eng |
dc.subject.proposal | Genes | eng |
dc.subject.proposal | Lipase | eng |
dc.subject.proposal | Identification | eng |
dc.title | Identificación de Genes de Lipasas Extracelulares en Candida Palmioleophila y su Relación con Genes Lip2 y Lip6 | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience | Todas las Audiencias | spa |
dcterms.references | Agualimpia Balderrama, B. H. (2013). Microorganismos con capacidad para degradar las grasas y aceites vegetales presentes en el efluente del proceso de refinación de aceites de C.I. Saceites. Universidad Industrial de Santander. http://tangara.uis.edu.co/biblioweb/tesis/2013/147491.pdf | spa |
dcterms.references | Agualimpia, B., Otero, J. V., & Zafra, G. (2016). Evaluation of native microorganisms for biodegradation of oil and grease in palm oil refinery effluents. Biotecnol Apl, 1(33), 1221-1226. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO= 68552 | spa |
dcterms.references | Akoh, C. C., Lee, G. C., & Shaw, J. F. (Junio de 2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39(6), 513-26. https://pubmed.ncbi.nlm.nih.gov/15554150/ | spa |
dcterms.references | Alarcón Vivero, M. R. (2008). Producción de la lipasa LIP 2 de Candida rugosa en el sistema Pichia pastoris: caracterización y aplicación en reacciones de síntesis. Universitat Autónoma de Barcelona. https://www.tdx.cat/bitstream/handle/10803/5320/mrav1de1.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | American Psychological Association. (2010). Manual de Publicaciones de la American Psychological Association (6 ed.). (M. G. Frías, Trad.) México, México: El Manual Moderno. | spa |
dcterms.references | American Psychological Association. (2010). Manual de Publicaciones de la American Psychological Association (6 ed.). (M. G. Frías, Trad.) El Manual Moderno. | spa |
dcterms.references | Anobom, C. D., Pinheiro, A. S., De Andrade, R. A., Aguieiras, E. C., Andrade, G. C., Moura, M. V., . . . Freire, D. M. (2014). From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases. BioMed Research International, 1-11. https://www.hindawi.com/journals/bmri/2014/684506/ | spa |
dcterms.references | Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Society, 1(1), 343:177-183. https://www.researchgate.net/publication/12806164_Arpigny_JL_Jaeger_KE_Bacterial_lipolytic_enzymes_classification_and_properties_Biochem_J_343_177-183 | spa |
dcterms.references | Bancerz, R., Osińska Jaroszuk , M., Jaszek, M., Sulej , J., Wiater , A., Matuszewska , A., & Rogalski, J. (2018). Fungal polysaccharides as a water-adsorbing material in esters production with the use of lipase from Rhizomucor variabilis. International Journal of Biological Macromolecules,, 118, 957-964. https://pubmed.ncbi.nlm.nih.gov/29964116/ | spa |
dcterms.references | Barragán, M. C., & Peñaranda, I. (2021). Caracterización in vitro de factores asociados a virulencia en Candida palmioleophila. [Tesis no Publicada]. Universidad de Santander. | spa |
dcterms.references | Bell, P. J., Sunna , A., Gibbs , M. D., Curach, N. C., Nevalainen, H., & Bergquist , P. L. (s.f.). Prospecting for novel lipase genes using PCR a aThe GenBank accession number for the sequence reported in this paper is AF421484. . Microbiology Society, 148(8), 2283-2291. https://www.microbiologyresearch.org/content/journal/micro/10.1099/00221287-148-8-2283?crawler=true | spa |
dcterms.references | Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast, 14(12), 1069-1087. https://pubmed.ncbi.nlm.nih.gov/9778794/ | spa |
dcterms.references | Brusés, B. L., Horacio, L., Aguirre, M. V., & Gorodner, J. O. (2000). Comparación de técnicas de extracción de DNA para la detección de Trypanosoma cruzi mediante la técnica de | spa |
dcterms.references | PCR. Comunicaciones Científicas y tecnológicas. Universidad Nacional del Nordeste. https://www.buenastareas.com/ensayos/m-011/76239082.html | spa |
dcterms.references | Butler, G., Rasmussen, M. D., Lin, M. F., Santos, M. A., Sakthikumar, S., Munro, C. A., . . . Cuomo, C. A. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459(7247), 657–662. https://pubmed.ncbi.nlm.nih.gov/19465905/ | spa |
dcterms.references | Camarena Gutierrez, G. (2012). Interacción planta-hongos micorrízicos arbusculares. Revista Chapingo serie ciencias forestales y del ambiente, 18(3), 409-421. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-40182012000300012&lng=en&nrm=iso | spa |
dcterms.references | Castelblanco Velandia, A. A. (2010). Búsqueda de genes codificadores de lipasa en una biblioteca metagenómica de suelo de bosque alto Andino mediante PCR. Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/handle/10554/8739 | spa |
dcterms.references | Chandra, P., Enespa, Singh, R., & Pankaj Kumar , A. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19(1), 169. https://microbialcellfactories.biomedcentral.com/track/pdf/10.1186/s12934-020-01428-8.pdf | spa |
dcterms.references | De Almeida, A. F., Tauk-Tornisielo, S. M., & Cano Carmona, E. (17 de noviembre de 2013). Acid lipase from candida viswanathii: production, biochemical properties, and potential application. https://www.hindawi.com/journals/bmri/2013/435818/ | spa |
dcterms.references | De la Rosa Martin, T., Galpert Cañizares, D., & Pupo Meriño, M. (2013). Modelación y manejo de bases de datos para el almacenamiento de la información sobre ortología genética. Revista Cubana de Ciencias Informáticas. 7(3), 14-22. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-18992013000300002&lng=pt&tlng=es | spa |
dcterms.references | Eguiarte, L. E., Souza, V., & Aguirre, X. (2007). Ecología molecular (1 ed.). https://www.researchgate.net/publication/258129643_Ecologia_Molecular | spa |
dcterms.references | Felsenstein , J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791. https://www.jstor.org/stable/2408678 | spa |
dcterms.references | Gupta, R., Kumari, A., Syal, P., & Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 57, 40-54. https://pubmed.ncbi.nlm.nih.gov/25573113/ | spa |
dcterms.references | Hare, R. K., & Arendrup, M. C. (2010). Candida palmioleophila: characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. Journal of Clinical Microbiology, 49(2), 549-556. | spa |
dcterms.references | He, W. S., Li , L., Zhao, J., Xu , H., Rui, J., Cui, D., & Li, H. (2019). Candida sp. 99-125 lipase-catalyzed synthesis of ergosterol linolenate and its characterization. Food Chemistry, 280 , 286-293. https://europepmc.org/article/med/30642499 | spa |
dcterms.references | Høegh, I., Patkar, S., Halkier, T., & Hansen, M. T. (1995). Two lipases from candida antarctica: cloning and expression in aspergillus oryzae. Canadian Journal of Botany, 73(S1), 869-875. https://cdnsciencepub.com/doi/10.1139/b95-333 | spa |
dcterms.references | Holland, S. L., Reader, T., Dyer, P. S., & Avery, S. V. (2013). Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environmental Microbiology, 16(6), 1729–1740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231229/ | spa |
dcterms.references | Houde, A., Kademi , A., & Leblanc , D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology, 118(1-3), 155-170. https://pubmed.ncbi.nlm.nih.gov/15304746/ | spa |
dcterms.references | Hube, B., Stehr, F., Bossenz, M., & Mazur, A. (2000). Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Archives of Microbiology, 174(5), 362-374. https://www.researchgate.net/publication/225489274_Hube_B_Stehr_F_Bossenz_M_Mazur_A_Kretschmar_M_Schafer_WSecreted_lipases_of_Candida_albicans_cloning_characterization_and_expression_analysis_of_a_new_gene_family_with_at_least_ten_members_Arch_Microbi | spa |
dcterms.references | Hung, J. H., & Weng, Z. (2016). Sequence Alignment and Homology search with blast and clustalw. Cold Spring Harbor Protocols. https://escholarship.umassmed.edu/bioinformatics_pubs/95 | spa |
dcterms.references | Identificación molecular y análisis de genes de lipasas de microorganismos con capacidad de remoción de grasas y aceites.(2016). Universidad de Santander. | spa |
dcterms.references | Jaeger , K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390-397. https://pubmed.ncbi.nlm.nih.gov/12323363/ | spa |
dcterms.references | Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396-403. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.9443&rep=rep1&type=pdf | spa |
dcterms.references | Jafari, N., Kasra-Kermanshahi, R., & Soudi, M. R. (2013). Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iranian journal of microbiology, 5(4), 434–440. | spa |
dcterms.references | Jahangiri, A., Møller, A. H., Danielsen, M., Madsen, B., Joernsgaard, B., Vaerbak, S., . . . Dalsgaard, T. K. (2018). Hydrophilization of bixin by lipase-catalyzed transesterification with sorbitol. . Food Chemistry, 268, 203-209. | spa |
dcterms.references | Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 8(3), 275-282. | spa |
dcterms.references | Kalousová, M., Levová, K., Kuběna, A. A., Jáchymová, M., Franková, V., & Zima, T. (2017). Comparison of DNA isolation using salting-out procedure and automated isolation (MagNA system). Preparative Biochemistry & Biotechnology, 47(7), 703-708. | spa |
dcterms.references | Kapoor , M., & Gupta, M. N. (2012). Lipase promiscuity and its biochemical applications. Process Biochemistry, 47(4), 555-569. | spa |
dcterms.references | Kimura , M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. | spa |
dcterms.references | Kumar , S., Stecher , G., Li, M., Knyaz , C., & Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://pubmed.ncbi.nlm.nih.gov/29722887/ | spa |
dcterms.references | Lee, G. C., Tang, S. J., Sun, K. H., & Shaw, J. F. (1999). Analysis of the gene family encoding lipases in candida rugosa by competitive reverse transcription-PCR. Applied and Environmental Microbiology, 65(9), 3888-3895. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC99716/ | spa |
dcterms.references | Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments(63). | spa |
dcterms.references | Mancheño, J. M., Pernas, M. A., Martı́nez, M. J., Ochoa, B., Rúa, M. L., & Hermoso, J. A. (2003). Structural insights into the lipase/esterase behavior in the candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97Å resolution. Journal of Molecular Biology, 332(5), 1059-1069. | spa |
dcterms.references | Martínez Corona, R., Cortes Penagos, C., Madrigal Pérez, L. A., & González Hernández, J. C. (2019). Hongos y levaduras: fábricas de lipasas. Interciencia, 44(7), 378-385. https://www.interciencia.net/wp-content/uploads/2019/08/378_A_Gonzalez_Hernandez_v44n7.pdf | spa |
dcterms.references | Martínez Hernández, A., Mena Espino, M. E., Herrera Estrella, A. H., & Martínez Hernández, P. (2010). Construcción de bibliotecas de ADNc y análisis de expresión génica por RT-PCR en agaves. Revista Latinoamericana de Química, 38(1), 21-44. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0370-59432010000100003 | spa |
dcterms.references | Mehta, A., Bodh, U., & Gupta, R. (2017). Fungal lipases: a review. Journal of Biotech Research, 8(1), 58-77. | spa |
dcterms.references | Meunchan , M., Michely, S., Devillers, H., Nicaud, J. M., Marty, A., & Neuvéglise, C. (2015). Comprehensive analysis of a yeast lipase family in the yarrowia clade. Plos One, 10(11), 22. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143096 | spa |
dcterms.references | Miller, S. A., Dykes , D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC334765/ | spa |
dcterms.references | Nakase, T., Itoh, M., Suzuki, M., Komagata, K., & Kodama, T. (1988). Candida palmioleophila sp. nov., a yeast capable of assimilating crude palm oil, formerly identified as torulopsis candida. The Journal of General and Applied Microbiology, 34(6), 493-498. | spa |
dcterms.references | Okwute, O. L., & Ijah, U. J. (2014). Bioremediation of palm oil mill effluent (POME) polluted soil using microorganisms found in organic wastes. The International Journal of Biotechnology, Conscientia Beam, 3(3), 32-46. | spa |
dcterms.references | Olempska Beer, Z. S., Merker , R. I., Ditt, M. D., & Dinovi, M. (2006). Food-processing enzymes from recombinant microorganisms-a review. Regulatory Toxicology and Pharmacology, 45(2), 144-158. | spa |
dcterms.references | Palero, F., & Crandall, K. A. (2009). Phylogenetic inference using molecular data (1 ed.). | spa |
dcterms.references | Pardi Célis, G., Guilarte G, C., & Cardozo, E. I. (2008). Detección de candida albicans en pacientes con candidiasis pseudomembranosa. Rev Odontol Univ Cid São Paulo, 20(3), 228-236. | spa |
dcterms.references | Peil, G. H., Kuss , A. V., Rave, A. F., Villarreal, J. P., Hernandes, Y. M., & Nascente, P. S. (2016). Bioprospecting of lipolytic microorganisms obtained from industrial effluents. Anais da Academia Brasileira de Ciências, 88(3 suppl), 1769-1779. | spa |
dcterms.references | Pinzon Gutierrez, Y. A., Bustamante, S. L., & Buitrago, G. (2009). Evaluación de métodos para la conservación de hongos fitopatógenos del ñame (Dioscorea sp.). Revista Colombiana de Biotecnología, 11(2), 8-18. | spa |
dcterms.references | Rabbani, M., Reza Bagherinejad, M., MirMohammad Sadeghi, H., Samsam Shariat, Z., Etemadifar, Z., Fatemeh, M., . . . Zaghian, S. (2013). Isolation and characterization of novel thermophilic lipase-secreting bacteria. Brazilian Journal of Microbiology, 44(4), 1113–1119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958176/ | spa |
dcterms.references | Rincón, L., Agualimpia, B., & Zafra, A. (2018). Differential protein profiles of the lipolytic yeast Candida palmioleophila under different growth conditions. Chemical Engineering Transactions, 64, 343. https://www.researchgate.net/publication/325828096_Differential_Protein_Profiles_of_the_Lipolytic_Yeast_Candida_palmioleophila_under_Different_Growth_Conditions | spa |
dcterms.references | Rodríguez Mateusa, Z., Vera Pachecoa, K., & Zafraa, G. (2018). Molecular detection and characterization of novel lipase genes of the lipolytic yeast candida palmioleophila. Chemical Engineering Transactions, 64, 349-354. | spa |
dcterms.references | Rodríguez, A., Rodríguez, M., Cordoba , J. J., & Andrade, M. J. (2015). Design of primers and probes for quantitative real-time PCR methods. Methods in Molecular Biology, 1275, 31–56. | spa |
dcterms.references | Rodríguez, Z. P. (2016). Identificación molecular y análisis de genes de lipasas de microorganismos con capacidad de remoción de grasas y aceites. Universidad de Santander. | spa |
dcterms.references | Rodríguez, Z. P., Agualimpia, B., & Zafra, A. (2016). Isolation and molecular characterization of microorganisms with potential for the degradation of oil and grease from palm oil refinery wastes. Chemical Engineering Transactions, 49, 517-522. | spa |
dcterms.references | Rotticci Mulder, J. C., Gustavsson, M., Holmquist, M., Hult, K., & Martinelle, M. (s.f.). Expression in Pichia pastoris of candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expression and Purification, 21(3), 386-392. | spa |
dcterms.references | Sailas, B., & Ashok, P. (2001). Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 44(2), 213-221. https://www.scielo.br/j/babt/a/yT5NJNSSRM55npGWgBFMM3N/?lang=en | spa |
dcterms.references | Sandoval Pineda, J. F., Ochoa Corona, F. M., & Torres Rojas, E. (2017). Evaluación de diferentes métodos de extracción de ARN a partir del hongo nativo Xylaria sp. Revista Colombiana de Biotecnología, 19(1), 42-52. | spa |
dcterms.references | Schofield, D. A., Westwater, C., Warner, T., & Balish, E. (2005). Differential Candida albicans lipase gene expression during alimentary tract colonization and infection. FEMS Microbiology Letters, 244(2), 359-365. | spa |
dcterms.references | Sharmaa, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19(8), 627-662. | spa |
dcterms.references | Singh, A. K., & Mukhopadhyay, M. (2011). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166(2), 486-520. | spa |
dcterms.references | Stehr, F., Felk, A., Gácser, A., Kretschmar, M., Mähnß, B., Neuber, K., . . . Schäfer, W. (2004). Expression analysis of the lipase gene family during experimental infections and in patient samples. FEMS Yeast Research. FEMS Yeast Research, 4(4-5), 401-408. | spa |
dcterms.references | Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2002). Multiple sequence alignment using clustalW and clustalX. Current Protocols in Bioinformatics, 00(1), 2.3.1-2.3.22. | spa |
dcterms.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. | spa |
dcterms.references | Vakhlu , J., & Kour , A. (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9(1), 69-85. | spa |
dcterms.references | Valero, F. (2012). Heterologous expression systems for lipases: a review. Methods in Molecular Biology (Clifton, N.J.), 861, 161–178. https://pubmed.ncbi.nlm.nih.gov/22426719/ | spa |
dcterms.references | Veera Pagu, M., Narayanan, S., Karuppiah, P., & Jeya, K. R. (2013). Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian Journal of Pharmaceutical and Clinical Research, suppl 3, 62-67. | spa |
dcterms.references | White, T. A., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide To Methods And Applications, 315-322. | spa |
dcterms.references | Wu, J., Ling, B., Yang, X., Liao, W., Pan, W., & Yao, Z. (2014). Development of two molecular approaches for differentiation of clinically relevant yeast species closely related to candida guilliermondii and candida famata. Journal of Clinical Microbiology, 52(9), 3190-3195. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313136/ | spa |
dcterms.references | Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden , T. L. (2012). Primer-blast: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(134), 1-11. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_71e4c1898caa6e32 | spa |
Archivos
Paquete original
1 - 1 de 1
- Nombre:
- Identificación_de_Genes_de_Lipasas_Extracelulares_en_Candida_Palmioleophila_y_su_Relación_con_Genes_Lip2_y_Lip6.pdf
- Tamaño:
- 12.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento Principal
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 59 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: