Publicación: Potencial Cardioprotector de Encapsulados Polifenólicos de Theobroma cacao L. Sobre un Modelo In Vitro de Cardiotoxicidad Inducido por Doxorrubicina
Potencial Cardioprotector de Encapsulados Polifenólicos de Theobroma cacao L. Sobre un Modelo In Vitro de Cardiotoxicidad Inducido por Doxorrubicina
dc.contributor.advisor | García-Sánchez, Liliana Torcoroma | |
dc.contributor.author | Paez-Lizcano, Silvia Catalina | |
dc.contributor.author | Uceda-Castellanos, Leidy Marcela | |
dc.contributor.jury | Hernández, Indira Paola | |
dc.contributor.jury | Rueda-Forero, Nohora Juliana | |
dc.contributor.researchgroup | Biotecnología Agroambiental y Salud - MICROBIOTA | |
dc.contributor.researchgroup | Manejo Clínico - CLINIUDES | |
dc.date.accessioned | 2023-09-21T23:03:03Z | |
dc.date.available | 2023-09-21T23:03:03Z | |
dc.date.issued | 2023-07-19 | |
dc.description | Digital | spa |
dc.description.abstract | Antecedentes: El cáncer es considerado un desafío global de salud pública y una de las principales causas de muerte, a nivel global. Los tratamientos convencionales se basan en el uso de quimioterápicos como Doxorrubicina (Dox), que ocasionan gran variedad de efectos adversos, principalmente de tipo cardiotóxico. Así, es importante el estudio de terapias complementarias con capacidad cardioprotectora. Al respecto, polifenoles derivados de Theobroma cacao L han sido descritos como potentes antioxidantes, antiinflamatorios y cardioprotectores. Métodos: Extractos polifenólicos de semillas de clones de T. cacao L [CCN51 (A16-160) e ICS-95 (ICS-95)] fueron deshidratados mediante spray dryer y liofilización respectivamente; y encapsulados en goma arábiga al 16%. Ensayos de citotoxicidad de los encapsulados y de interacción farmacológica, en combinación con Dox, fueron realizados sobre células de miocardioblastos murinos H9c2. Técnicas de microscopía óptica y de fluorescencia fueron usadas para estimar los efectos sobre la integridad celular, el potencial de membrana mitocondrial y el estrés oxidativo. Resultados: Las terapias individuales con encapsulados de T. cacao L demostraron muy baja toxicidad sobre células H9c2 (CC50 A16-160=4.709 ± 2,0 µg/mL; CC50 ICS-95=1.916 ± 4,0 µg/mL), en comparación con Dox (CC50 10,3 ± 0,6 µg/mL). No obstante, su uso combinado con Dox presentó comportamiento sinergístico sobre H9c2, incrementando la toxicidad del quimioterapéutico [Dox+A16-160 (∑CIF= 0,4 ± 0,14) y Dox+ICS-95 (∑CIF= 0,5 ± 0,12)], a pesar de disminuir hasta cuatro veces su CC50. Igualmente, la mezcla de encapsulados de cacao con Dox incrementó la perturbación del potencial de membrana mitocondrial y el aumento de estrés oxidativo, sobre las células cardiacas. Conclusión: Los extractos polifenólicos de T. cacao L demostraron ser seguros sobre las células estudiadas, sin embargo, estudios posteriores de interacción farmacológica con Dox deben realizarse usando menores concentraciones, considerando su potencial antioxidante y cardioprotector. | spa |
dc.description.abstract | Background: Cancer is considered a global public health challenge and one of the leading causes of death, worldwide. Conventional treatments are based on the use of chemotherapy drugs such as Doxorubicin (Dox), which cause a wide variety of adverse effects, mainly cardiotoxic. Thus, it is important to study complementary therapies with cardioprotective capacity. In this regard, polyphenols derived from Theobroma cacao L have been described as potent antioxidants, anti-inflammatory and cardioprotective. Methods: Polyphenolic extracts from seeds of T. cacao L clones [CCN51 (A16-160) and ICS-95 (ICS-95)] were dehydrated by spray dryer and lyophilization, respectively; and encapsulated in 16% gum arabic. Cytotoxicity of the studied encapsulates as well as drug interaction assays, in combination with Dox, were performed on H9c2 murine myocardioblast cells. Light and fluorescence microscopy techniques were used to estimate effects on cell integrity, mitochondrial membrane potential and oxidative stress. Results: Individual therapies with T. cacao L encapsulates showed very low citotoxicity on H9c2 cells (CC50 A16-160=4,709 ± 2.0 µg/mL; CC50 ICS-95=1,916 ± 4.0 µg/mL), compared to Dox (CC50 10.3 ± 0.6 µg/mL). However, its combined use with Dox presented synergistic behavior on H9c2, increasing the toxicity of the chemotherapeutic [Dox+A16-160 (∑CIF= 0.4 ± 0.14) and Dox+ISC-95 (∑CIF= 0.5 ± 0.12)], despite decreasing up to four times its CC50 value. Likewise, the mixture of cocoa encapsulates with Dox increased the perturbation of mitochondrial membrane potential and increased oxidative stress, on cardiac cells. Conclusion: The polyphenolic extracts of T. cacao L proved to be safe on the cells studied; however, further studies of pharmacological interaction with Dox should be carried out using lower concentrations, considering its antioxidant and cardioprotective potential. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Microbiólogo Industrial | |
dc.description.researcharea | Tecnologías y Biotecnologías Aplicadas en el Agroambiente, Salud e Industria | |
dc.format.extent | 32 p | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | image/png | |
dc.identifier.instname | Universidad de Santander | |
dc.identifier.local | T 33.23 P129p | |
dc.identifier.reponame | Repositorio Digital Universidad de Santander | |
dc.identifier.repourl | https://repositorio.udes.edu.co | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/9264 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Santander | |
dc.publisher.branch | Bucaramanga | |
dc.publisher.faculty | Facultad de Ciencias Naturales | |
dc.publisher.place | Bucaramanga, Colombia | |
dc.publisher.program | Microbiología Industrial | |
dc.relation.references | Organización Mundial de la Salud. Enfermedades cardiovasculares. (OMS). 2015. Available from: http://www.who.int/mediacentre/factsheets/fs317/es/ | |
dc.relation.references | Enfermedades cardiovascular. WHO.int. https://www.who.int/es/health-topics/cardiovascular-diseases | |
dc.relation.references | Departamento Nacional de Estadísticas (DANE). Defunciones no Fetales 2021 preliminar. Departamento Nacional de Estadísticas (DANE). 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos-y-defunciones/defunciones-no-fetales/defunciones-no-fetales-12/2022 | |
dc.relation.references | Adão R, De Keulenaer G, Leite-Moreira A, Brás-Silva C. Cardiotoxicity associated with cancer therapy: Pathophysiology and prevention. Rev Port Cardiol. 2013;32(5). http://dx.doi.org/10.1016/j.repce.2012 | |
dc.relation.references | Ajaykumar C. Overview on the side effects of doxorubicin. Npj Precision Oncology. IntechOpen; 2021. 10.5772/intechopen.94896 | |
dc.relation.references | Brunton L, Lazo JS, Parker K. Goodman & gilman’s the pharmacological basis of therapeutics. 11th ed. Sanford L, Gilman A, editors. New York, NY: McGraw-Hill Medical; 2005. | |
dc.relation.references | Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139(111708):111708. https://doi.org/10.1016/j.biopha.2021.111708 | |
dc.relation.references | Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155–62 http://dx.doi.org/10.1159/000265166 | |
dc.relation.references | Ferreira A, Matsubara L, Matsubara B. Anthracycline-induced cardiotoxicity. Cardiovasc Hematol Agents Med Chem. Betham Science. 2008;6(4):278–81. http://dx.doi.org/10.2174/187152508785909474 | |
dc.relation.references | Hrdina R, Gersl V, Klimtová I, Simůnek T, Machácková J, Adamcová M. Anthracycline-induced cardiotoxicity. Acta Medica (Hradec Kralove). 2000;43(3):75–82. http://dx.doi.org/10.14712/18059694.2019.117 | |
dc.relation.references | Lipshultz S. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. U.S. National Library of Medicine; 1991. https://do.org/10.1056/NEJM199103213241205 | |
dc.relation.references | Tanai E, Frantz S. Pathophysiology of heart failure. Compr Physiol. 2015;6(1):187–214. http://dx.doi.org/10.1002/cphy.c140055 | |
dc.relation.references | Armenian S. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. U.S. National Library of Medicine; 2017. https://doi.org/10.1200/JCO.2016.70.5400 | |
dc.relation.references | Romero M, Vásquez E, Acero G, Huérfano L. Estimación de los costos directos de los eventos coronarios en Colombia. Rev Colomb Cardiol. 2018 [citado el 21 de junio de 2023];25(6):373–9. https://doi.org/10.1016/j.rccar.2018.05.010 | |
dc.relation.references | Enfermedades cardiovasculares. WHO.int. Disponible en: https://www.who.int/es/health-topics/cardiovascular-diseases | |
dc.relation.references | Bouayed J, Bohn T. Exogenous antioxidants-double-edged swords in cellular redoc state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. OXID MED CELL LONGEV. 2010;3(4):228–37. https://doi.org/10.4161/oxim.3.4.12858 | |
dc.relation.references | Agrawal A. Pharmacological Activities of Flavonoids: A Review.IJPSN. 2011;4(2). https://doi.org/10.37285/ijpsn.2011.4.2.3 | |
dc.relation.references | Cooper KA, Donovan JL, Waterhouse AL, Williamson G. Cocoa and health: a decade of research. nUTR. 2008;99:1–11. https://doi.org/10.1017/S0007114507795296 | |
dc.relation.references | Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. NUTR CLIN. 2005;317–25. https://doi.org/10.1093/ajcn/81.1.317S | |
dc.relation.references | Global cocoa production 2022/23. Statista. https://www.statista.com/statistics/262620/globalcocoa-production | |
dc.relation.references | Sesso H, Manson J. Effect of cocoa flavanol supplementation for the Prevention of Cardiovascular Disease Events: The Cocoa Supplement and Multivitamin Outcomes Study (Cosmos) randomized clinical trial. U.S. NL; 2022. https://doi.org/10.1093/ajcn/nqac055 | |
dc.relation.references | Fivelman QL, Adagu IS, Warhurst DC. Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. ASM. 2004;48(11):4097–102. https://doi.org/10.1128/aac.48.11.4097-4102.2004 | |
dc.relation.references | Azeredo CMO, Soares MJ. Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth. Rev Bras Farmacogn. 2013;23(5):762–8. https://doi.org/10.1590/S0102-695X2013000500007 | |
dc.relation.references | Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol. 2018;78:34–60. https://doi.org/10.1016/j.tifs.2018.05.018 | |
dc.relation.references | Bolvar-Meja A. Burden of cardiovascular disease in Colombia. Rodriguez-Morales AJ, editor. Current Topics in Public Health. 2013. DOI 10.5772/53280 | |
dc.relation.references | Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of Anthracyclines. Frontiers; 2020 https://doi.org/10.3389/fcvm.2020.00026 | |
dc.relation.references | Kalyanaraman B. Exploiting the tumor immune microenvironment and immunometabolism using mitochondria‐targeted drugs: Challenges and opportunities in racial disparity and cancer outcome research. FASEB J. 2022;36(4). https://doi.org/10.1096/fj.202101862R | |
dc.relation.references | Madonna R. Diagnóstico y prevención de la cardiotoxicidad inducida por fármacos antineoplásicos: de la imagen a las tecnologías «ómicas». Rev Esp Cardiol. 2017;70(7):576–82. https://doi.org/10.1016/j.recesp.2016.12.032 | |
dc.relation.references | Velásquez C. Cardiotoxicidad inducida por la quimioterapia desde las bases Moleculares Hasta la Perspectiva Clínica. https://doi.org/10.1016/j.rccar.2015.10.002 | |
dc.relation.references | Agudelo C, Acevedo S, Carrillo-Hormaza L, Galeano E, Osorio E. Chemometric classification of Colombian cacao crops: Effects of different genotypes and origins in different years of harvest on levels of flavonoid and methylxanthine metabolites in raw cacao beans. Molecules. 2022;27(7):2068. https://doi.org/10.3390/molecules27072068 | |
dc.relation.references | Nair P, Cocoa KP. Theobroma cacao L. In The Agronomy and Economy of Important Tree Crops of the Developing World. Amsterdam, The Netherlands: Elsevier; 2010. | |
dc.relation.references | Veres B. Anti-inflammatory role of natural polyphenols and their degradation products. En: Fernandez R, editor. Severe Sepsis and Septic Shock - Understanding a Serious Killer. Londres, Inglaterra: InTech; 2012. | |
dc.relation.references | Chen W-C, Hsieh S-R, Chiu C-H, Hsu B-D, Liou Y-M. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9C2 rat cardiomyoblasts - journal of biomedical science. BioMed Central; 2014. https://doi.org/10.1186/1423-0127-21-56 | |
dc.relation.references | Andújar I, Recio MC, Giner RM, Ríos JL. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev. 2012;2012:906252. https://doi.org/10.1155/2012/906252 | |
dc.relation.references | Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317–33. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x | |
dc.relation.references | Ariyarathna I. Microencapsulation stabilizes curcumin for efficient delivery in food applications. Elsevier; 2016. https://doi.org/10.1016/j.fpsl.2016.10.005 | |
dc.relation.references | Miller KB, Stuart DA, Smith NL, Lee CY, McHale NL, Flanagan JA, et al. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J Agric Food Chem. http://dx.doi.org/10.1021/jf060290o | |
dc.relation.references | Ottaviani JI, Carrasquedo F, Keen CL, Lazarus SA, Schmitz HH, Fraga CG. Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine in isolated DNA. Arch Biochem Biophys. 2002;406(2):203–8. http://dx.doi.org/10.1016/s0003-9861(02)00455-1 | |
dc.relation.references | García OJ, Angélica B, Sandoval P, Juan A, Fajardo GB. Innovación tecnológica en cacao andino Producto 7. Informe con la caracterización de extractos de flavonoides y pruebas de encapsulación realizadas. Fontagro.org. [cited 2023 Jun 20]. https://www.fontagro.org/new/uploads/productos/16109_-_Producto_7.pdf | |
dc.relation.references | Rahayu Y, Triwahyuni I, Kusumawardani B, Sari D. The cytotoxic and proliferative activity of cocoa pod husk extract (Theobroma cacao L.) on periodontal ligament fibroblasts. Odonto Dent J. 2022;9(1):46. http://dx.doi.org/10.30659/odj.9.1.46-52 | |
dc.relation.references | Kaźmierczak-Barańska J, Karwowski B, Adamus-Grabicka A, Boguszewska K. Two faces of vitamin C-antioxidative and Pro-Oxidative Agent. U.S. National Library of Medicine; 2020. 12:1501. https://doi.org/10.3390/nu12051501 | |
dc.relation.references | Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513–23. https://doi.org/10.1016/j.fitote.2011.01.018 | |
dc.relation.references | Rietjens I, Boersma M, Haan L de, Spenkelink B, Awad H, Cnubben N, et al. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol. 2002;11(3–4):321–33. http://dx.doi.org/10.1016/s1382-6689(02)00003-0 | |
dc.rights | Derechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.decs | Enfermedades Infecciosas | |
dc.subject.proposal | Theobroma cacao L | spa |
dc.subject.proposal | Doxorrubicina | spa |
dc.subject.proposal | Cardioprotección | spa |
dc.subject.proposal | Cardiomioblastos | spa |
dc.subject.proposal | Encapsulados polifenólicos | spa |
dc.subject.proposal | Theobroma cacao L | eng |
dc.subject.proposal | Doxorrubicin | eng |
dc.subject.proposal | Cardioprotection | eng |
dc.subject.proposal | Cardiomyoblasts | eng |
dc.subject.proposal | Polyphenolic encapsulates | eng |
dc.title | Potencial Cardioprotector de Encapsulados Polifenólicos de Theobroma cacao L. Sobre un Modelo In Vitro de Cardiotoxicidad Inducido por Doxorrubicina | spa |
dc.title.translated | Cardioprotective Potential of Polyphenolic Encapsulates of Theobroma cacao L. on an In Vitro Model of Cardiotoxicity Induced by Doxorubicin | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_71e4c1898caa6e32 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/submittedVersion | |
dcterms.audience | Todas las Audiencias | spa |
dspace.entity.type | Publication |
Archivos
Paquete original
1 - 5 de 10
No hay miniatura disponible
- Nombre:
- Potencial_Cardioprotector_de_Encapsulados_Polifenólicos_de_Theobroma_cacao_L._Sobre_un_Modelo_In_Vitro_de_Cardiotoxicidad_Inducido_por_Doxorrubicina.pdf
- Tamaño:
- 872.19 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Informe Turnitin Paez et al. 2023. FINAL (1).pdf
- Tamaño:
- 901.98 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: