Publicación: Evaluación de Péptidos Análogos a la Proteína Tir Como Moléculas de Reconocimiento en Biosensores Electroquímicos para la Detección de Escherichia Coli O157:H7 en Matrices Acuosas
Evaluación de Péptidos Análogos a la Proteína Tir Como Moléculas de Reconocimiento en Biosensores Electroquímicos para la Detección de Escherichia Coli O157:H7 en Matrices Acuosas
dc.contributor.advisor | Ropero Vega, José Luis | |
dc.contributor.advisor | Flórez Castillo, Johanna-Marcela | |
dc.contributor.advisor | Rondón Villarreal, Paola | |
dc.contributor.author | Redondo Ortega, Joshua Hugo Felipe | |
dc.date.accessioned | 2021-08-25T14:30:17Z | |
dc.date.available | 2021-08-25T14:30:17Z | |
dc.date.issued | 2021-07-15 | |
dc.description | Digital | spa |
dc.description.abstract | Los biosensores son sistemas basados en nanomateriales y biomoléculas que exhiben notables propiedades, tales como: simplicidad, portabilidad, eficiencia y facilidad de usar para la detección de patógenos como Escherichia coli. En este trabajo se informa por primera vez sobre el diseño de nuevos péptidos basados en la proteína TIR, un receptor de la proteína de membrana intimina característica de E. coli. Estos nuevos péptidos se utilizaron como elementos de reconocimiento para la detección de E. coli. Para este estudio, utilizando la herramienta LigPlot, se realizó un análisis de interacción entre intimina y TIR utilizando la estructura PDB: 2ZQK. Posteriormente, la secuencia asociada a la zona de interacción de TIR fue modelada con PEP-FOLD. Finalmente, a partir de los modelos obtenidos se realizó un estudio de Docking molecular y análisis de interacción, que permitieron definir dos moléculas de reconocimiento denominadas PEPTIR 1 y PEPTIR 2.0, las cuales fueron inmovilizadas en un transductor electroquímico basado en nanomateriales y se evaluó su capacidad de detección de E. coli mediante técnicas electroquímicas. El biosensor basado en PEPTIR 1.0 mostró la capacidad de detectar E. coli, exhibiendo un rango de trabajo lineal entre 0 a 500 UFC / mL y límites de detección y cuantificación de 2 y 6 UFC / mL, respectivamente. Además, el dispositivo mostró la capacidad de detectar de manera selectiva E. coli en presencia de otros microorganismos como P. aeruginosa y S. aereus. Por lo que se destacan la posibilidad de que este dispositivo pueda ser utilizado en la detección rápida, sensible y selectiva de E coli en matrices acuosas. Mientras que el biosensor basado en PEPTIR 2.0 mostró un gran potencial para ser evaluado en su capacidad para detectar con un mayor espectro, microorganismos gramnegativos en una matriz acuosa. | spa |
dc.description.abstract | Biosensors are systems based on nanomaterials and biomolecules that exhibit remarkable properties, such as: simplicity, portability, efficiency and ease of use for the detection of pathogens such as Escherichia coli. This work reports for the first time on the design of new peptides based on the TIR protein, a receptor for the intimin membrane protein characteristic of E. coli. These new peptides are used as recognition elements for the detection of E. coli. For this study, using the LigPlot tool, an interaction analysis between intimin and TIR was performed using the PDB: 2ZQK structure. Subsequently, the sequence associated with the TIR interaction zone was modeled with PEP-FOLD. Finally, from the obtained models, a molecular docking study and interaction analysis were carried out, which allowed defining two recognition molecules called PEPTIR 1 and PEPTIR 2.0, which were immobilized in an electrochemical transducer based on nanomaterials and their capacity was evaluated. detection of E. coli by electrochemical techniques. The biosensor based on PEPTIR 1.0 showed the ability to detect E. coli, exhibiting a linear working range between 0 to 500 CFU / mL and detection and quantification limits of 2 and 6 CFU / mL, respectively. Furthermore, the device showed the ability to selectively detect E. coli in the presence of other microorganisms, such as P. aeruginosa and S. aereus. Therefore, the possibility that this device can be used in the rapid, sensitive and selective detection of E coli in aqueous matrices stands out. While the biosensor based on PEPTIR 2.0 showed great potential to be evaluated in its ability to detect with a wider spectrum, gram-negative microorganisms in an aqueous matrix. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Biotecnología | spa |
dc.description.edition | 1 ed. | spa |
dc.description.tableofcontents | Introducción .................................................................................................................................. 17 1. Marco de Referencia ................................................................................................................. 22 1.1 Marco de Antecedentes ................................................................................................... 22 1.2 Marco Legal ..................................................................................................................... 25 1.3 Marco Teórico ................................................................................................................. 29 1.3.1 E. coli O157:H7 y sus Proteínas de Adhesión: Intimina y TIR .................................... 29 1.3.2 Biosensores Electroquímicos ........................................................................................ 32 1.3.3 Nanopartículas de Oro (AuNPs) en el Diseño de Biosensores Electroquímicos ......... 32 1.3.4 Péptidos ........................................................................................................................ 35 1.3.5 Proteínas de Membrana Externa ................................................................................... 35 1.3.6 Bioinformática Estructural ........................................................................................... 36 2. Objetivos ................................................................................................................................... 37 2.1 Objetivo General .............................................................................................................. 37 2.2 Objetivos Específicos ...................................................................................................... 37 3. Péptido Bioinspirado en la Proteína Tir como Molécula de Reconocimiento en Biosensores Electroquímicos Modificados con Aunps para la Detección de E. Coli O157: H7 en Matrices Acuosas ......................................................................................................................................... 38 3.1 Resumen .......................................................................................................................... 38 3.2 Metodología ..................................................................................................................... 39 3.2.1 Reactivos, Materiales e Instrumentos ........................................................................... 39 3.2.2 Diseño de Péptidos Análogos a la Proteína TIR de E. Coli O157:H7 Mediante Herramientas Bioinformáticas ............................................................................................... 40 3.2.3 Preparación del Biosensor Electroquímico Utilizando el Péptido Diseñado ............... 42 3.2.4 Evaluación de la Capacidad de Detección de E. coli O157:H7 del Biosensor Electroquímico Utilizando los Péptidos Diseñados............................................................... 47 3.3 Resultados ........................................................................................................................ 49 3.3.1 Diseño de Péptidos Análogos a la Proteína TIR de E. coli O157:H7 Mediante Herramientas Bioinformáticas ............................................................................................... 49 3.3.2 Docking Molecular entre la Proteína Intimina y el Péptido Diseñado ......................... 53 3.3.3 Preparación del Biosensor Electroquímico Utilizando el Péptido Diseñado ............... 56 3.3.4 Evaluación de la Capacidad de Detección de E. Coli O157:H7 del Biosensor Electroquímico Utilizando los Péptidos Diseñados............................................................... 61 3.4 Conclusiones Parciales .................................................................................................... 69 5. Nueva Molécula de Reconocimiento Diseñada a Partir de Peptir 1.0 para la Detección de E. Coli O157: H7 en Matrices Acuosas Mediante Biosensores Electroquímicos ............................. 70 5.1 Resumen .......................................................................................................................... 70 5.2 Metodología ..................................................................................................................... 72 5.2.1 Reactivos, Materiales e Instrumentos ........................................................................... 72 5.2.2 Modelado de Secuencias Análogas a la Molécula Peptir 1.0 ....................................... 72 5.2.3 Preparación del Biosensor Electroquímico Utilizando AuNPs y la Molécula de Reconocimiento Peptir 2.0 .................................................................................................... 74 5.2.4 Evaluación de la Capacidad de Detección del Biosensor Electroquímico Utilizando Peptir 2.0 como Molécula de Reconocimiento ...................................................................... 74 5.3 Resultados ........................................................................................................................ 75 5.3.1 Modelado de Secuencias Análogas a la Molécula Peptir 1.0 ....................................... 75 5.3.2 Preparación del Biosensor Electroquímico Utilizando AuNPs y la Molécula de Reconocimiento Peptir 2.0 .................................................................................................... 79 5.3.3 Evaluación de la Capacidad de Detección del Biosensor Electroquímico Utilizando Peptir 2.0 como Molécula de Reconocimiento ...................................................................... 82 5.4 Conclusiones Parciales .................................................................................................... 87 6. Conclusiones Generales ............................................................................................................ 89 7. Recomendaciones ..................................................................................................................... 91 Referencias Bibliográficas ............................................................................................................ 93 Apéndice ..................................................................................................................................... 105 | spa |
dc.format.extent | 120 p | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.local | T 91.21 R226e | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/5551 | |
dc.language.iso | spa | spa |
dc.publisher | Bucaramanga : Universidad de Santander, 2021 | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas, Naturales y Agropecuarias | spa |
dc.publisher.place | Bucaramanga, Colombia | spa |
dc.publisher.program | Maestría en Biotecnología | spa |
dc.rights | Derechos Reservados - Universidad de Santander, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.proposal | Biosensores | spa |
dc.subject.proposal | Nanomateriales | spa |
dc.subject.proposal | Biomoléculas | spa |
dc.subject.proposal | Intimina | spa |
dc.subject.proposal | Biosensors | eng |
dc.subject.proposal | Nanomaterials | eng |
dc.subject.proposal | Biomolecules | eng |
dc.subject.proposal | Intimin | eng |
dc.title | Evaluación de Péptidos Análogos a la Proteína Tir Como Moléculas de Reconocimiento en Biosensores Electroquímicos para la Detección de Escherichia Coli O157:H7 en Matrices Acuosas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience | Todas las Audiencias | spa |
dcterms.references | Alonso Nore, L. X., & Poveda Sáncehz, J. A. (2008). Estudio comparativo en técnicas de recuento rápido en el mercado y placas Petrifilm para el análisis de alimentos. 19–180. http://www.javeriana.edu.co/biblos/tesis/ciencias/tesis230.pdf | spa |
dcterms.references | Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 | spa |
dcterms.references | Bachan Upadhyay, L. S., & Verma, N. (2012). Enzyme Inhibition Based Biosensors: A Review. Analytical Letters, 46(2), 225–241. https://doi.org/10.1080/00032719.2012.713069 | spa |
dcterms.references | Batchelor, M., Prasannan, S., Daniell, S., Reece, S., Connerton, I., Bloomberg, G., Dougan, G., Frankel, G., & Matthews, S. (2000). Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. EMBO Journal, 19(11), 2452–2464. https://doi.org/10.1093/emboj/19.11.2452 | spa |
dcterms.references | Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Jr., E. F. M., Brice, M. D., Rodgers, J. R., O. Kennard, T. S., & Tasumi, M. (1977). RCSB PDB: Policies. The Protein Data Bank: A Computer-Based Archival File for Macromolecular Structures. http://www.rcsb.org/pages/policies#References | spa |
dcterms.references | Bhalla, N., Jolly, P., Formisano, N., & Estrela, P. (2016). Introduction to biosensors. June, 1–8. https://doi.org/10.1042/EBC20150001 | spa |
dcterms.references | Bos, M. P., & Ã, J. T. (2004). Biogenesis of the Gram-negative bacterial outer membrane. 610–616. https://doi.org/10.1016/j.mib.2004.10.011 | spa |
dcterms.references | Brosel-Oliu, S., Ferreira, R., Uria, N., Abramova, N., Gargallo, R., Muñoz-Pascual, F. X., & Bratov, A. (2018). Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensors and Actuators, B: Chemical, 255, 2988–2995. https://doi.org/10.1016/j.snb.2017.09.121 | spa |
dcterms.references | Brosel-Oliu, S., Uria, N., Abramova, N., & Bratov, A. (2015). Impedimetric Sensors for Bacteria Detection. In Biosensors - Micro and Nanoscale Applications. InTech. https://doi.org/10.5772/60741 | spa |
dcterms.references | Carralero Sanz, V., Mena, M. L., González-Cortés, A., Yáñez-Sedeño, P., & Pingarrón, J. M. (2005a). Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Analytica Chimica Acta, 528(1), 1–8. https://doi.org/10.1016/j.aca.2004.10.007 | spa |
dcterms.references | Carralero Sanz, V., Mena, M. L., González-Cortés, A., Yáñez-Sedeño, P., & Pingarrón, J. M. (2005b). Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes. Analytica Chimica Acta, 528(1), 1–8. https://doi.org/10.1016/j.aca.2004.10.007 | spa |
dcterms.references | Castro Ortiz, L. P., Luna Pabello, V. M., & Villalobos Pietrini, R. (2007). Estado del arte y perspectivas del uso de biosensores ambientales en México. Revista Internacional de Contaminación Ambiental, 23(1), 35–45. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/21677/21648 | spa |
dcterms.references | Cesewski, E., & Johnson, B. N. (2020). Electrochemical biosensors for pathogen detection. In Biosensors and Bioelectronics (Vol. 159, p. 112214). Elsevier Ltd. https://doi.org/10.1016/j.bios.2020.112214 | spa |
dcterms.references | Clases, C., & Estructura, N. A. S. (n.d.). Aminoácidos, péptidos y proteínas. http://biblio3.url.edu.gt/Publi/Libros/2013/Bioquimica/08-O.pdf | spa |
dcterms.references | Detection, R., & Adulterants, F. (2016). Biosensor 5. 1, 125–145. https://doi.org/10.1016/B978-0-12-420084-5.00005-6 | spa |
dcterms.references | DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S., & Brett Finlay, B. (1999). Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infection and Immunity, 67(5), 2389–2398. https://doi.org/10.1128/iai.67.5.2389-2398.1999 | spa |
dcterms.references | DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S., & Finlay, B. B. (1999). Enterohemorrhagic Escherichia coliO157:H7 Produces Tir, Which Is Translocated to the Host Cell Membrane but Is Not Tyrosine Phosphorylated. Infection and Immunity, 67(5), 2389–2398. https://doi.org/10.1128/IAI.67.5.2389-2398.1999 | spa |
dcterms.references | Dondapati, S. K. (2007). Electrochemically controlled patterning for biosensor arrays Dondapati Srujan Kumar. https://tdx.cat/handle/10803/8544#page=35 | spa |
dcterms.references | eae - Intimin - Escherichia coli O157:H7 - eae gene & protein. (n.d.). Retrieved January 7, 2021, from https://www.uniprot.org/uniprot/P43261 | spa |
dcterms.references | Elvira Farfán-García, A., Catherine Ariza-Rojas, S., & Andrea Vargas-Cárdenas Lizeth Viviana Vargas-Remolina, F. (2014). mechanisms of enteropathogenic Escherichia coli. Biotecnologiaa , 33(4), 13. https://doi.org/10.4067/S0716-10182016000400009 | spa |
dcterms.references | Etesami, M., Karoonian, F. S., & Mohamed, N. (2011). Electrochemical Deposition of Gold Nanoparticles on Pencil Graphite by Fast Scan Cyclic Voltammetry. Journal of the Chinese Chemical Society, 58(5), 688–693. https://doi.org/10.1002/jccs.201190107 | spa |
dcterms.references | FAO. (n.d.). Enfermedades transmitidas por alimentos y su impacto socioeconómico. In Fao. http://www.fao.org/3/a-i0480s.pdf | spa |
dcterms.references | FAO. (2011). Prevención de la E.coli en los alimentos. El Marco de Gestión de Crisis Para La Cadena Alimentaria (FCC), 4–13. http://www.fao.org/fileadmin/user_upload/agns/pdf/Preventing_Ecoli_es.pdf | spa |
dcterms.references | Fisher, L. (2005). The Law : Scholarly Support for War Powers in a Republic. Presidential Studies Quarterly, 3(3), 590–607. https://doi.org/10.1016/S1462-0758(00)00006-6 | spa |
dcterms.references | Gonçalves, L. F., De Oliveira Martins, P., De Melo, A. B. F., Da Silva, R. C. R. M., De Paulo Martins, V., Pitondo-Silva, A., & De Campos, T. A. (2016). Multidrug resistance dissemination by extended-spectrum β-lactamase-producing Escherichia coli causing community-acquired urinary tract infection in the Central-Western Region, Brazil. Journal of Global Antimicrobial Resistance, 6(2010), 1–4. https://doi.org/10.1016/j.jgar.2016.02.003 | spa |
dcterms.references | Guerrero, J. A. (2016). Protocolo de vigilancia en salud pública-Enfermedades Transmitidas por alimentos. Instituto Nacional De Salud, 3–4. http://www.hosusana.gov.co/sites/default/files/u1/capacitacion/PRO Enfermedades Trans. por alimentos.pdf | spa |
dcterms.references | Gupta, A., Bhardwaj, S. K., Sharma, A. L., Kim, K. H., & Deep, A. (2019). Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environmental Research, 171(November 2018), 395–402. https://doi.org/10.1016/j.envres.2019.01.049 | spa |
dcterms.references | Hajihosseini, S., Nasirizadeh, N., Hejazi, M. S., & Yaghmaei, P. (2016). A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Materials Science and Engineering C, 61, 506–515. https://doi.org/10.1016/j.msec.2015.12.091 | spa |
dcterms.references | He, Y., Xie, S., Yang, X., Yuan, R., & Chai, Y. (2015). Electrochemical Peptide Biosensor Based on in Situ Silver Deposition for Detection of Prostate Speci fi c Antigen. https://doi.org/10.1021/acsami.5b01827 | spa |
dcterms.references | Holzinger, M., Goff, A. Le, & Cosnier, S. (2014). Nanomaterials for biosensing applications: A review. In Frontiers in Chemistry (Vol. 2, Issue AUG). Frontiers Media S. A. https://doi.org/10.3389/fchem.2014.00063 | spa |
dcterms.references | Hoyos-Nogués, M., Brosel-Oliu, S., Abramova, N., Bratov, A., Mas-Moruno, C., & Gil, F. J. (2016). Sensor impedimétrico para la detección de bacterias patogénicas mediante péptidos antimicrobianos. Biomecánica, 24, 32–38. https://doi.org/10.5821/sibb.24.1.5195 | spa |
dcterms.references | Hui, L., Magoun, L., Luperchio, S., Schauer, D. B., & Leong, J. M. (1999). The Tir-binding region of enterohaemorrhagic Escherichia coli intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling. Molecular Microbiology, 34(1), 67–81. https://doi.org/10.1046/j.1365-2958.1999.01574.x | spa |
dcterms.references | Jerse, A. E., Yu, J., Tall, B. D., & Kaper, J. B. (1990). A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 87(20), 7839–7843. https://doi.org/10.1073/pnas.87.20.7839 | spa |
dcterms.references | Kafi, A., Cho, H. Y., & Choi, J. W. (2016). Engineered peptide ‑ based nanobiomaterials for electrochemical cell chip. Nano Convergence. https://doi.org/10.1186/s40580-016-0077-7 | spa |
dcterms.references | Kanyong, P., Rawlinson, S., & Davis, J. (2016). Gold nanoparticle modified screen-printed carbon arrays for the simultaneous electrochemical analysis of lead and copper in tap water. Microchimica Acta, 183(8), 2361–2368. https://doi.org/10.1007/s00604-016-1879-3 | spa |
dcterms.references | Karimzadeh, A., Hasanzadeh, M., Shadjou, N., & De, M. (2018). Trends in Analytical Chemistry Peptide based biosensors. Trends in Analytical Chemistry, 107, 1–20. https://doi.org/10.1016/j.trac.2018.07.018 | spa |
dcterms.references | Kaya, H. O., Cetin, A. E., Azimzadeh, M., & Topkaya, S. N. (2021). Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. In Journal of Electroanalytical Chemistry (Vol. 882, p. 114989). Elsevier B.V. https://doi.org/10.1016/j.jelechem.2021.114989 | spa |
dcterms.references | Kocsis, L., & Csμmpai, A. (2015). Electrochemical and Photometric Detection of Plasmin by Specific Peptide Substrate. 1–11. https://doi.org/10.1002/elan.201400622 | spa |
dcterms.references | Labib, M., Zamay, A. S., Kolovskaya, O. S., Reshetneva, I. T., Zamay, G. S., Kibbee, R. J., Sattar, S. A., Zamay, T. N., & Berezovski, M. V. (2012). Aptamer-based impedimetric sensor for bacterial typing. Analytical Chemistry, 84(19), 8114–8117. https://doi.org/10.1021/ac302217u | spa |
dcterms.references | Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u | spa |
dcterms.references | LeStrange, K., Markland, S. M., Hoover, D. G., Sharma, M., & Kniel, K. E. (2017). An evaluation of the virulence and adherence properties of avian pathogenic Escherichia coli. One Health, 4(June), 22–26. https://doi.org/10.1016/j.onehlt.2017.08.001 | spa |
dcterms.references | Li, S. C., & Ng, Y. K. (2010). Calibur: a tool for clustering large numbers of protein decoys. BMC Bioinformatics, 11(1), 25. https://doi.org/10.1186/1471-2105-11-25 | spa |
dcterms.references | Li, Y., Afrasiabi, R., Fathi, F., Wang, N., Xiang, C., Love, R., She, Z., & Kraatz, H. B. (2014). Impedance based detection of pathogenic E. coli O157: H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosensors and Bioelectronics, 58, 193–199. https://doi.org/10.1016/j.bios.2014.02.045 | spa |
dcterms.references | Liu, X., Marrakchi, M., Xu, D., Dong, H., & Andreescu, S. (2016). Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosensors and Bioelectronics, 80, 9–16. https://doi.org/10.1016/j.bios.2016.01.041 | spa |
dcterms.references | Luis, J., & Ávila, S. (n.d.). Desarrollo de aptasensores para la detección de bacterias enteropatógenas. http://www.tesisenred.net/bitstream/handle/10803/460682/JLSA_TESIS.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Luo, Y., Frey, E. A., Pfuetzner, R. A., Creaght, A. L., Knoechel, D. G., Haynes, C. A., Finlay, B. B., & Strynadka, N. C. J. (2000). Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature, 405(6790), 1073–1077. https://doi.org/10.1038/35016618 | spa |
dcterms.references | Majdalawieh, A., Kanan, M. C., El-Kadri, O., & Kanan, S. M. (2014). Recent Advances in Gold and Silver Nanoparticles: Synthesis and Applications. Journal of Nanoscience and Nanotechnology, 14(7), 4757–4780. https://doi.org/10.1166/jnn.2014.9526 | spa |
dcterms.references | Majzik, A., Fülöp, L., Csapó, E., Bogár, F., Martinek, T., Penke, B., Bíró, G., & Dékány, I. (2010). Functionalization of gold nanoparticles with amino acid, β-amyloid peptides and fragment. Colloids and Surfaces B: Biointerfaces, 81(1), 235–241. https://doi.org/10.1016/j.colsurfb.2010.07.011 | spa |
dcterms.references | Malvano, F., Pilloton, R., & Albanese, D. (2020). A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chemistry, 325, 126868. https://doi.org/10.1016/j.foodchem.2020.126868 | spa |
dcterms.references | Maupetit, J., Derreumaux, P., & Tuffery, P. (2009). PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Research, 37(Web Server), W498–W503. https://doi.org/10.1093/nar/gkp323 | spa |
dcterms.references | Minciencias. (2017). Política de ética, bioética e integridad científica dirección de fomento a la investigación | spa |
dcterms.references | Mohanty, U. S. (2011). Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. Journal of Applied Electrochemistry, 41(3), 257–270. https://doi.org/10.1007/s10800-010-0234-3 | spa |
dcterms.references | Murray, P. (2006). Guía de Interpretación de Resultados Microbiológicos de Alimentos. Microbiología de Los Alimentos Fund, 13,14. http://www.anmat.gov.ar/Alimentos/Guia_de_interpretacion_resultados_microbiologicos.pdf | spa |
dcterms.references | Online, V. A., Yi, H., Yuan, R., & Xu, W. (2015). RSC Advances. https://doi.org/10.1039/C5RA10662A | spa |
dcterms.references | Organización Mundial de la Salud. (2005). Manual de bioseguridad en el laboratorio. Organización Mundial de la Salud. https://books.google.es/books?hl=es&lr=&id=Z3NV_StRaF8C&oi=fnd&pg=PP8&dq=manual+de+bioseguridad+en+el+laboratorio+oms&ots=2iVXg64-o0&sig=mv-jcVg1X6oCtNAoxXQKW3IPZY8#v=onepage&q=manual de bioseguridad en el laboratorio oms&f=false | spa |
dcterms.references | Pettersen EF, Goddard TD, Huang CC, Sofá GS, Greenblatt DM, Meng EC, F. T. J. C. C. (n.d.). UCSF Chimera: un sistema de visualización para la investigación y el análisis exploratorios. Retrieved March 26, 2019, from https://www.cgl.ucsf.edu/chimera/docs/credits.html | spa |
dcterms.references | Protein BLAST: búsqueda en bases de datos de proteínas mediante una consulta de proteínas. (n.d.). Retrieved January 7, 2021, from https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome | spa |
dcterms.references | Raveh, B., London, N., & Schueler-Furman, O. (2010). Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins: Structure, Function and Bioinformatics, 78(9), 2029–2040. https://doi.org/10.1002/prot.22716 | spa |
dcterms.references | RCSB PDB - 2Y9X: Crystal structure of PPO3. (n.d.). Retrieved May 2, 2020, from https://www.rcsb.org/structure/2ZQK | spa |
dcterms.references | Rodovalho, V. R., Araujo, G. R., Vaz, E. R., Ueira-vieira, C., Goulart, L. R., & Madurro, J. M. (2018). Biosensors and Bioelectronics Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection. Biosensors and Bioelectronic, 100(October 2017), 577–582. https://doi.org/10.1016/j.bios.2017.10.012 | spa |
dcterms.references | Rosetta. (n.d.). Rosetta Interface Analyzer. Available online: Retrieved May 4, 2021, from https://new.rosettacommons.org/docs/latest/application_documentation/analysis/interface-analyzer | spa |
dcterms.references | Schrodinger. (n.d.). GitHub - schrodinger / pymol-open-source: base de código abierto del sistema de visualización molecular PyMOL patrocinado por el usuario. Retrieved May 4, 2021, from https://github.com/schrodinger/pymol-open-source | spa |
dcterms.references | Stan, C., En, P., & Piensos, L. O. S. A. Y. (2009). Codex stan 193-1995. http://www.fao.org/fileadmin/user_upload/livestockgov/documents/CXS_193s.pdf | spa |
dcterms.references | Tian, M., Kanavillil, N., Davey, L., Leung, K. T., Schraft, H., & Chen, A. (2007). Direct growth of biofilms on an electrode surface and its application in electrochemical biosensoring. Journal of Electroanalytical Chemistry, 611(1–2), 133–139. https://doi.org/10.1016/j.jelechem.2007.08.009 | spa |
dcterms.references | tir - Translocated intimin receptor Tir - Escherichia coli O157:H7 - tir gene & protein. (n.d.). Retrieved January 7, 2021, from https://www.uniprot.org/uniprot/Q7DB77 | spa |
dcterms.references | Vanova, V., Mitrevska, K., Milosavljevic, V., Hynek, D., Richtera, L., & Adam, V. (2021). Peptide-based electrochemical biosensors utilized for protein detection. In Biosensors and Bioelectronics (Vol. 180, p. 113087). Elsevier Ltd. https://doi.org/10.1016/j.bios.2021.113087 | spa |
dcterms.references | Velázquez, M. Drosos, J. Gueto, C. Márquez, J. Reyes, R. (2013). Método acoplado Autodock – PM6 para seleccionar la mejor pose en estudios de acoplamiento molecular Autodock – PM6 method to A Autodock – PM6 metodo choose the better pose in pra seleccionar o melhor molecular docking studies pose en estudios de acoplamie. Revista Colombiana de Química, 42(1), 1–8. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28042013000100007 | spa |
dcterms.references | Viva, Q., Marcelo, A., & Adrian, A. (2009). Structural bioinformatics : the drugs virtual reality game. | spa |
dcterms.references | Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). Ligplot - a Program To Generate Schematic Diagrams of Protein Ligand Interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127 | spa |
dcterms.references | Wang, J., Li, S., & Zhang, Y. (2010). A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode. Electrochimica Acta, 55(15), 4436–4440. https://doi.org/10.1016/j.electacta.2010.02.078 | spa |
dcterms.references | Wang, L., Mao, W., Ni, D., Di, J., Wu, Y., & Tu, Y. (2008). Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochemistry Communications, 10(4), 673–676. https://doi.org/10.1016/j.elecom.2008.02.009 | spa |
dcterms.references | World Health Organization. (2015). ¿Qué es el Reglamento Sanitario Internacional? http://www.who.int/features/qa/39/es/ | spa |
dcterms.references | Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 32(23), btw514. https://doi.org/10.1093/bioinformatics/btw514 | spa |
dcterms.references | Yang, H., Zhou, H., Hao, H., Gong, Q., & Nie, K. (2016). Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sensors and Actuators, B: Chemical, 229, 297–304. https://doi.org/10.1016/j.snb.2015.08.034 | spa |
dcterms.references | Zhang, J., & Cao, Y. (2019). Peptide-Based Biosensors. In Nano-Inspired Biosensors for Protein Assay with Clinical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815053-5.00007-6 | spa |
dcterms.references | Zhao, S., Wen, H., Ou, Y., Li, M., Wang, L., Zhou, H., Di, B., Yu, Z., & Hu, C. (2021). A new design for living cell-based biosensors: Microgels with a selectively permeable shell that can harbor bacterial species. Sensors and Actuators, B: Chemical, 334, 129648. https://doi.org/10.1016/j.snb.2021.129648 | spa |
dcterms.references | Zheng, L., Cai, G., Wang, S., Liao, M., Li, Y., & Lin, J. (2019). A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors and Bioelectronics, 124–125, 143–149. https://doi.org/10.1016/j.bios.2018.10.006 | spa |
dcterms.references | Zhong, M., Yang, L., Yang, H., Cheng, C., Deng, W., Tan, Y., Xie, Q., & Yao, S. (2019). An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosensors and Bioelectronics, 126, 493–500. https://doi.org/10.1016/j.bios.2018.11.001 | spa |
dcterms.references | Zhou, S., Zheng, T., Chen, Y., Zhang, J., Li, L., Lu, F., & Zhu, J. (2014). Author ’ s Accepted Manuscript Toward Therapeutic Effects Evaluation of Chronic Myeloid Leukemia Drug : Electrochemical Platform for Caspase-3 Activity Sensing. Biosensors and Bioelectronic. https://doi.org/10.1016/j.bios.2014.05.064 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_71e4c1898caa6e32 | spa |
Archivos
Paquete original
1 - 1 de 1
- Nombre:
- Evaluación_de_Péptidos_Análogos_a_la_Proteína_Tir_Como_Moléculas_de_Reconocimiento_en_Biosensores_Electroquímicos_para_la_Detección_de_Escherichia_Coli_O157H.pdf
- Tamaño:
- 4.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento Principal
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 59 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: