Publicación: Hongos Endófitos de Lima Tahití (citrus citrus x latifolia) y su Utilidad en el Biocontrol de Colletotrichum acutatum Causante de Antracnosis
Hongos Endófitos de Lima Tahití (citrus citrus x latifolia) y su Utilidad en el Biocontrol de Colletotrichum acutatum Causante de Antracnosis
dc.contributor.advisor | Guerra Sierra, Beatriz Elena | |
dc.contributor.author | Muñoz Guerrero, Jaider | |
dc.date.accessioned | 2021-09-10T16:19:08Z | |
dc.date.available | 2021-09-10T16:19:08Z | |
dc.date.issued | 2021-09-06 | |
dc.description | Digital | spa |
dc.description.abstract | Colletotrichum acutatum es uno de los agentes causales de la antracnosis que se caracteriza por lesiones en hojas y sobre todo en flores y frutos, de varios cultivos como los cítricos. El patógeno normalmente ataca a las flores, provocando graves lesiones. En condiciones muy favorables, puede afectar los botones florales y los frutos pequeños, provocando una pudrición completa y una caída prematura, lo que resulta en importantes pérdidas económicas en las cosechas. Los objetivos de este trabajo fueron: 1) identificar la diversidad de hongos endófitos en muestras vegetales de lima Tahití; 2) evaluar la capacidad antagonista de estos hongos frente al fitopatógeno Colletotrichum acutatum C-100 en pruebas duales; 3) evaluar la capacidad de diferentes especies de hongos endofíticos para controlar flores con antracnosis inducida y 4) identificar molecularmente las cepas fúngicas con mayor actividad inhibitoria para Colletotrichum acutatum. Se obtuvieron 138 aislados fúngicos a partir de 486 fragmentos de ramas, hojas y frutos; de las cuales se identificaron 15 morfoespecies. Se encontró una mayor frecuencia de morfoespecies en ramas y hojas, con un nivel de diversidad comparable con lo reportado en otras especies de cítricos. De las 15 morfoespecies, 5 se probaron contra Colletotrichum acutatum en pruebas de antagonismo, lo que resultó en un hallazgo de inhibición positiva. Solo 2 hongos endofíticos de las pruebas de antagonismo demostraron una alta inhibición del fitopatógeno, por lo que se utilizaron en pruebas in vivo con flores de lima Tahití, aplicadas en una solución de esporas. Estos hongos fueron identificados molecularmente como Xylaria adscendens y Trichoderma atroviride, los cuales redujeron considerablemente las lesiones provocadas por el fitopatógeno en estas pruebas in vivo. El hallazgo de que los endófitos reaccionaran de manera antagónica contra Colletotrichum acutatum, demuestra su capacidad y utilidad como biocontroladores de antracnosis, convirtiéndolos en especies promisorias para futuras investigaciones en campo y desarrollo biotecnológico, apuntando a una agroindustria que requiere sostenibilidad ambiental. | spa |
dc.description.abstract | Colletotrichum acutatum is one of the causative agents of anthracnose characterized by lesions on leaves and especially on flowers and fruits, of various crops such as citrus. The pathogen normally attacks flowers, causing serious injury. Under very favorable conditions, it can affect flower buds and small fruits, causing complete rot and premature fall, resulting in significant economic losses in crops. The objectives of this work were: 1) to identify the diversity of endophytic fungi in Tahiti lime plant samples; 2) evaluate the antagonistic capacity of these fungi against the phytopathogen Colletotrichum acutatum C-100 in dual tests; 3) evaluate the capacity of different species of endophytic fungi to control flowers with induced anthracnose and 4) molecularly identify the fungal strains with the highest inhibitory activity for Colletotrichum acutatum. 138 fungal isolates were obtained from 486 fragments of branches, leaves and fruits; of which 15 morphospecies were identified. A higher frequency of morphospecies was found in branches and leaves, with a level of diversity comparable to that reported in other citrus species. Of the 15 morphospecies, 5 were tested against Colletotrichum acutatum in antagonism tests, resulting in a positive inhibition finding. Only 2 endophytic fungi from the antagonism tests demonstrated high inhibition of the phytopathogen, which is why they were used in in vivo tests with Tahiti lime flowers, applied in a spore solution. These fungi were molecularly identified as Xylaria adscendens and Trichoderma atroviride, which considerably reduced the lesions caused by the phytopathogen in these in vivo tests. The finding that endophytes reacted in an antagonistic way against Colletotrichum acutatum, demonstrates their capacity and usefulness as anthracnose biocontrollers, making them promising species for future field research and biotechnological development, pointing to an agribusiness that requires environmental sustainability. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Biotecnología | spa |
dc.description.edition | 1 ed. | spa |
dc.description.tableofcontents | 1. Introducción 14 2.Objetivos 17 2.1.General 17 2.2.Específicos 17 3.Marco Teórico 18 3.1.Generalidades de los Citricultivos 18 3.3.Agricultura sostenible y control biológico en cítricos 25 3.6.Control biológico contra especies de Colletotrichum usando hongos endófitos 36 4.Metodología 41 4.1.Área de estudio y colección de muestras vegetales 41 4.2.Aislamiento de hongos endófitos 42 4.3.Frecuencia de colonización y frecuencia relativa de aislamiento 43 4.5.Análisis de diversidad 44 4.7.Ensayos in vivo en flores de lima Tahití y estimación de severidad 46 4.8.Aislamiento de ADN de hongos e identificación molecular 50 5.Resultados y discusión 52 5.1.Aislamiento de hongos endófitos y frecuencia de colonización 52 5.2.Caracterización morfológica 53 5.3.Análisis de diversidad 58 5.5.Ensayos in vivo: inhibición de antracnosis en flores de lima Tahití 66 5.6.Identificación molecular de hongos endofíticos antagonistas 72 6.Conclusiones 77 Referencias Bibliográficas 79 | spa |
dc.format.extent | 99 p | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.local | T 91.21 M866h | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/5610 | |
dc.language.iso | spa | spa |
dc.publisher | Bucaramanga : Universidad de Santander, 2021 | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas, Naturales y Agropecuarias | spa |
dc.publisher.place | Bucaramanga, Colombia | spa |
dc.publisher.program | Maestría en Biotecnología | spa |
dc.rights | Derechos Reservados - Universidad de Santander, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.proposal | Cítricos | spa |
dc.subject.proposal | Fúngico | spa |
dc.subject.proposal | Fitopatógeno | spa |
dc.subject.proposal | Antagonismo | spa |
dc.subject.proposal | Bioactividad | spa |
dc.subject.proposal | Citrus | eng |
dc.subject.proposal | Fungal | eng |
dc.subject.proposal | Phytopathogenic | eng |
dc.subject.proposal | Antagonism | eng |
dc.subject.proposal | Bioactivity | eng |
dc.title | Hongos Endófitos de Lima Tahití (citrus citrus x latifolia) y su Utilidad en el Biocontrol de Colletotrichum acutatum Causante de Antracnosis | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience | Todas las Audiencias | spa |
dcterms.references | Abo, F.A. (2019). Endophytic fungi for sustainable agriculture. Microbial Biosystems, 4(1), 31–44. https://doi.org/10.21608/mb.2019.38886 | spa |
dcterms.references | Abro, M. A., Sun, X., Li, X., Jatoi, G. H., & Guo, L. D. (2019). Biocontrol potential of fungal endophytes against fusarium oxysporum f. Sp. cucumerinum causing wilt in cucumber. Plant Pathology Journal, 35(6), 598–608. https://doi.org/10.5423/PPJ.OA.05.2019.0129 | spa |
dcterms.references | Aiello, D., Carrieri, R., Guarnaccia, V., Vitale, A., Lahoz, E., & Polizzi, G. (2015). Characterization and pathogenicity of colletotrichum gloeosporioides and C. karstii causing preharvest disease on citrus sinensis in Italy. Journal of Phytopathology, 163(3), 168–177. https://doi.org/10.1111/jph.12299 | spa |
dcterms.references | Alwedyan, S., & Taani, A. (2020). Citrus Farmers Adoption of Sustainable Agriculture Practices and Its Determinants in the Jordan Valley: The Case of Northern Ghor. Journal of Sustainable Development, 14(1), 36. https://doi.org/10.5539/jsd.v14n1p36 | spa |
dcterms.references | Agibe, S. O. (2019). Endophytic Acremonium zeae and Xylaria adscendens in Crops: A Review. Global Scientific Journal. 7,7: 1003-1007. | spa |
dcterms.references | Aly AH, Debbab A, & Proksch P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 90(6):1829-1845. iq | spa |
dcterms.references | Ara, I., Rizwana, M., Othman, A. & Bakir, A. (2012). Studies of actinomycetes for biological control of Colletotrichum musae pathogen during post harvest anthracnose of banana. African Journal of Microbiology Research, 6(17). https://doi.org/10.5897/ajmr12.088 | spa |
dcterms.references | Arias, F., & Suarez, E. (2016). Comportamiento de las exportaciones de limón persa (Citrus latifolia tanaka) al mercado de los Estados Unidos. Journal of Agriculture and Animal Sciences, 5(2): 20–31. | spa |
dcterms.references | Arias. B., Yañez. V., Carrizales. L., & Sánchez. M. (2006). Hongos asociados a la caída prematura de frutos en lima persa (Citrus latifolia tan.) y evaluación de su control químico. Bioagro. 18:31.39. | spa |
dcterms.references | Arora. N. K. (2018). Agricultural sustainability and food security. Environmental Sustainability. 1(3). 217–219. https://doi.org/10.1007/s42398-018-00032-2 | spa |
dcterms.references | Balamurugan, S. (2014). In Vitro Antifungal Activity of Citrus aurantifolia Linn Plant Extracts against Phytopathogenic Fungi Macrophomina phaseolina. International Letters of Natural Sciences, 13, 70–74. https://doi.org/10.18052/www.scipress.com/ilns.13.70 | spa |
dcterms.references | Bamisile BS, Dash CK, Akutse KS, Keppanan R & Wang L (2018). Fungal Endophytes: Beyond Herbivore Management. Front. Microbiol. 9:544. doi: 10.3389/fmicb.2018.00544 | spa |
dcterms.references | Barnett. H. L., & Hunter. B. B. (1998). Illustrated genera of imperfect fungi. St. Paul. Minnesota. USA: The American Phytopathological Society | spa |
dcterms.references | Barquero. M., Perez. N., & Arauz. L. (2013). Presencia de Colletotrichum acutatum y Colletotrichum gleosporoides en Helecho Hoja De Cuero. Limón Criollo. Papaya. Carambola Y Mango En Costa Rica Y Florida (Estados Unidos). Agronomía Costarricense. 37(1). 23–38. | spa |
dcterms.references | Bazioli. J. M., Costa. J. H., Akiyama. D. Y., Pontes. D. M., Kupper. K. C., & Augusto. F. (2019). Biological Control of Citrus Postharvest Phytopathogens. Toxins. 11(8). DOI: 10.3390/toxins11080460. | spa |
dcterms.references | Ben Hadj Daoud H., Baraldi E., Iotti M., Leonardi P., & Boughalleb- M’Hamdi N. (2019) Characterization and pathogenicity of Colletotrichum spp. causing citrus anthracnose in Tunisia. Phytopathologia Mediterranea. 58(1): 175-185. doi: 10.13128/Phytopathol_ Mediterr-23762 | spa |
dcterms.references | Brodt, S., Six, J., Feenstra, G., Ingels, C. & Campbell, D. (2011) Sustainable Agriculture. Nature Education Knowledge 3(10):1. | spa |
dcterms.references | Cannon. P. F., Damm. U., Johnston. P. R., & Weir. B. S. (2012). Colletotrichum - current status and future directions. Studies in Mycology. 73. 181–213. https://doi.org/10.3114/sim0014 | spa |
dcterms.references | Cantillo, K., Maury, S., Rincón, K and Vargas. G. (2018). Microorganismos como biocontroladores de fitopatógenos en poscosecha de cítricos. Microciencia, Investigación, Desarrollo e Innovación, 7: 9-20. | spa |
dcterms.references | Caruso, G., Golubkina, N., Tallarita, A., Abdelhamid, M. T., & Sekara, A. (2020, November 1). Biodiversity, ecology, and secondary metabolites production of endophytic fungi associated with amaryllidaceae crops. Agriculture (Switzerland). MDPI AG. https://doi.org/10.3390/agriculture10110533 | spa |
dcterms.references | Chao. A., Chazdon. R. L., & Shen. T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters. 8(2). 148– 159. https://doi.org/10.1111/j.1461-0248.2004.00707.x | spa |
dcterms.references | Chauhan, N. M., Gutama, A. D., & Aysa, A. (2019). Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiology, 19(1). https://doi.org/10.1186/s12866-019-1547-y | spa |
dcterms.references | Chechi, A., Stahlecker, J., Dowling, M. E., & Schnabel, G. (2019). Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology, 158, 18–24. https://doi.org/10.1016/j.pestbp.2019.04.002 | spa |
dcterms.references | Chen, S. N., Luo, C. X., Hu, M. J., & Schnabel, G. (2016). Sensitivity of colletotrichum species, including C. Fioriniae and C. Nymphaeae, from peach to demethylation inhibitor fungicides. Plant Disease, 100(12). https://doi.org/10.1094/PDIS-04-16-0574-RE | spa |
dcterms.references | Chi, X., Yan, S., Chu, X., Wang, Y., Quan, F, & Laborda, P. (2021). Biocontrol strategies for the management of Colletotrichum species in postharvest fruits, Crop Protection,141, 105454. https://doi.org/10.1016/j.cropro.2020.105454 | spa |
dcterms.references | Choudhary, B., Nagpure, A., & Gupta, R. K. (2015). Biological control of toxigenic citrus and papaya-rotting fungi byStreptomyces violascensMT7 and its extracellular metabolites. Journal of Basic Microbiology, 55(12), 1343–1356. doi:10.1002/jobm.201500323 | spa |
dcterms.references | Chung K. R. (2011). Elsinoë fawcettii and Elsinoë australis: the fungal pathogens causing citrus scab. Molecular plant pathology, 12(2), 123–135. https://doi.org/10.1111/j.1364- 3703.2010.00663.x | spa |
dcterms.references | Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Tiedje, J. M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(D1). https://doi.org/10.1093/nar/gkt1244 | spa |
dcterms.references | Curk, F., Ollitrault, F., Garcia-Lor, A., Luro, F., Navarro, L., & Ollitrault, P. (2016). Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany, 117(4), 565–583. https://doi.org/10.1093/aob/mcw005 | spa |
dcterms.references | DANE. 2015. Cultivo del limón o lima Tahití (Citrus latifolia Tanaka) frente a los efectos de las condiciones climáticas adversas. Boletín mensual. Nº 41. 93 pp. Tomado en 10-01- 2021 de: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_nov_2015.pdf | spa |
dcterms.references | Da Costa Silveira. A. A., Araújo. L. G., de Fillipi. M. C. C., & Sibov. S. T. (2020). Isolation. identification and characterization of endophytic fungi of Bambusa oldhamii munro applied as antagonists to Pyricularia oryzae. Revista Ceres. 67(4). 296–305. https://doi.org/10.1590/0034-737X202067040007 | spa |
dcterms.references | Da Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F., & de Queiroz, M. V. (2020). Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Applied Microbiology and Biotechnology. Springer. https://doi.org/10.1007/s00253- 020-10363-y | spa |
dcterms.references | Deng, L., Zeng, K., Zhou, Y., & Huang, Y. (2015). Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. European Food Research and Technology, 240(4), 795–804. https://doi.org/10.1007/s00217-014-2385-7 | spa |
dcterms.references | De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews. 31, 3: 155-168. Elsevier Ltd. https://doi.org/10.1016/j.fbr.2017.05.001 | spa |
dcterms.references | De Silva, N. I., Brooks. S., Lumyong. S., & Hyde. K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews. 33 (2): 133-148. https://doi.org/10.1016/j.fbr.2018.10.001 | spa |
dcterms.references | Donkersley. P., Silva. F. W. S., Carvalho. C. M., Al-Sadi. A. M., & Elliot. S. L. (2018). Biological environmental and socioeconomic threats to citrus lime production. Journal of Plant Diseases and Protection. Springer Berlin Heidelberg. https://doi.org/10.1007/s41348-018-0160-x | spa |
dcterms.references | Dos Santos CM, Ribeiro AS, Garcia A, Polli AD, Polonio JC, Azevedo JL, Pamphile JA. (2019). Enzymatic and antagonist activity of endophytic fungi from Sapindus saponaria L. (Sapindaceae). Acta biol. Colomb; 24(2):322-330. DOI: http://dx.doi.org/10.15446/abc. v24n2.74717 | spa |
dcterms.references | Droby. S., Wisniewski. M., Macarisin. D., & Wilson. C. (2009). Twenty years of postharvest biocontrol research: ¿Is it time for a new paradigm? Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2008.11.009 | spa |
dcterms.references | Estrada. S.G., & Ramírez. G.M. (2019). Micología General. Manizales: Centro Editorial Universidad Católica de Manizales. | spa |
dcterms.references | Evans, E. A., Ballen, F. H., & Crane, J. H. (2014). Economic potential of producing tahiti limes in Southern Florida in the presence of citrus canker and citrus greening. HortTechnology, 24(1), 99–106. https://doi.org/10.21273/horttech.24.1.99 | spa |
dcterms.references | FAO (Food and Agriculture Organization of the United Nations) (2015). Citrus fruit statistics. 56 páginas. Consulado de: http://www.fao.org/3/i5558e/i5558e.pdf, en: 2-04-2021. | spa |
dcterms.references | Ferraz, L. P., Cunha, T. da, da Silva, A. C., & Kupper, K. C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research, 188-189, 72–79. doi:10.1016/j.micres.2016.04.012 | spa |
dcterms.references | Ferreira, F. V., A. M. Herrmann-Andrade, C. D. Calabrese, F. Bello, D. Vazquez, and M.A. Musumeci. (2020). Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post-harvest oranges [Citrus sinensis L. (Osbeck)]. Journal of Applied Microbiology 129 (3):712–27. | spa |
dcterms.references | Florián, LG., Alvarado, O., Pérez, O., González, R. & Olivares, E. (2019). Fungi associated with the regressive death of citrus fruits in Nuevo Leon and Tamaulipas, Mexico. Revista Mexicana Ciencias Agrícolas. 10, 4: 757-764 | spa |
dcterms.references | Forcelini. B. B., & Peres. N. A. (2018). Widespread resistance to QoI fungicides of Colletotrichum acutatum from strawberry nurseries and production fields. Plant Health Progress. 19(4). 338–341. https://doi.org/10.1094/PHP-08-18-0050-RS | spa |
dcterms.references | Frare. G. F., Couto. H. T. Z., Ciampi-Guillardi. M., & Amorim. L. (2016). The causal agent of citrus postbloom fruit drop, Colletotrichum acutatum, can survive on weeds. Australasian Plant Pathology. 45(4). 339–346. https://doi.org/10.1007/s13313-016-0419-2 Gómez G, N., & Eastman Ocampo, J. A. (2018). Exploración de mercados internacionales para la lima tahití producido en la empresa Inversiones El Refugio. Retrieved from https://ciencia.lasalle.edu.co/ administracion_agronegocios/220 | spa |
dcterms.references | Goulin. E. H., dos Santos. P. J. C., Dalio. R. D., & Machado. M. A. (2019). In vitro symptom induction of Colletotrichum abscissum infection in detached sweet orange flowers. Journal of Plant Pathology. 101(3). 695–699. https://doi.org/10.1007/s42161-018- 00220-3 | spa |
dcterms.references | Guarnaccia, V., Gehrmann, T., Silva-Junior, G. J., Fourie, P. H., Haridas, S., Vu, D., & Crous, P. W. (2019). Phyllosticta citricarpa and sister species of global importance to Citrus. Molecular Plant Pathology, 20(12), 1619–1635. https://doi.org/10.1111/mpp.12861 Grayum, M., Hammel, B., & Jiménez, Q. (2012). Validation of a scientific name for the tahitian lime. Phytoneuron, 101(November), 1–5. Retrieved from http://www.phytoneuron.net/101PhytoN-Citrus.pdf | spa |
dcterms.references | Hoang, D. T., Vinh, L. S., Flouri, T., Stamatakis, A., Von Haeseler, A., & Minh, B. Q. (2018). MPBoot: Fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evolutionary Biology, 18(1). https://doi.org/10.1186/s12862-018-1131-3 | spa |
dcterms.references | Huang, F., Chen, G. Q., Hou, X., Fu, Y. S., Cai, L., Hyde, K. D., & Li, H. Y. (2013). Colletotrichum species associated with cultivated citrus in China. Fungal Diversity, 61(1), 61–74. doi:10.1007/s13225-013-0232-y | spa |
dcterms.references | Huang, Q., An, H., Song, H., Mao, H., Shen, W., and Dong, J. (2015). Diversity and biotransformative potential of endophytic fungi associated with the medicinal plant Kadsura angustifolia. Research in Microbiology, 166(1), 45–55. https://doi.org/10.1016/j.resmic.2014.12.004 | spa |
dcterms.references | Huang, H., Tian, C., Huang, Y. et al. (2020). Biological control of poplar anthracnose caused by Colletotrichum gloeosporioides (Penz.). Egypt J Biol Pest Control 30, 104. https://doi.org/10.1186/s41938-020-00301-5 | spa |
dcterms.references | Iglesias, D. J., Cercós, M., Colmenero-Flores, J. M., Naranjo, M. A., Ríos, G., Carrera, E., & Talon, M. (2011). Ecophysiology of tropical tree crops citrus: An overview of fruiting physiology? In Citrus Fruits: Properties, Consumption and Nutrition (pp. 175–213). Nova Science Publishers, Inc. | spa |
dcterms.references | Ikram, M., Ali, N., Jan, G., Jan, F. G., & Khan, N. (2019). Endophytic Fungal Diversity and their Interaction with Plants for Agriculture Sustainability Under Stressful Condition. Recent Patents on Food, Nutrition & Agriculture, 11(2), 115–123. https://doi.org/10.2174/2212798410666190612130139 | spa |
dcterms.references | Ishii, H., Zhen, F., Hu, M., Li, X., & Schnabel, G. (2016). Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species. Pest Management Science, 72(10), 1844–1853. https://doi.org/10.1002/ps.4216 | spa |
dcterms.references | Jing, J., Zhang, H., Xue, Y., & Zeng, K. (2020). Effects of INA on postharvest blue and green molds and anthracnose decay in citrus fruit. Journal of Integrative Agriculture, 19(5), 1396–1406. doi:10.1016/s2095-3119(20)63169-0 | spa |
dcterms.references | Jin. H., Yan. Z., Liu. Q., Yang. X., Chen. J., & Qin. B. (2013). Diversity and dynamics of fungal endophytes in leaves. stems and roots of Stellera chamaejasme L. in northwestern China. Antonie van Leeuwenhoek. 104(6). 949–963. doi:10.1007/s10482-013-0014-2 | spa |
dcterms.references | Juybari, H. Z., Tajick Ghanbary, M. A., Rahimian, H., Karimi, K., & Arzanlou, M. (2019). Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran. Forest Pathology, 49(6). https://doi.org/10.1111/efp.12559 | spa |
dcterms.references | Kaul, S., Sharma, T., & Dhar, M. K. (2016). “Omics” tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00955 | spa |
dcterms.references | Kaur, R., Kaur, J., Kaur, M., Kalotra, V., Chadha, P., Kaur, A., & Kaur, A. (2020). An endophytic Penicillium oxalicum isolated from Citrus limon possesses antioxidant and genoprotective potential. Journal of Applied Microbiology, 128(5), 1400–1413. https://doi.org/10.1111/jam.14553 | spa |
dcterms.references | Khruengsai, S., Pripdeevech, P., Tanapichatsakul, C., Srisuwannapa, C., D’Souza, P. E., & Panuwet, P. (2021). Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its postharvest infections on strawberry fruits. PeerJ, 9. https://doi.org/10.7717/peerj.11242 | spa |
dcterms.references | Kjer. J., Debbab. A., Aly. A., & Proksch. P. (2010). Methods for isolation of marine- derived endophytic fungi and their bioactive secondary products. Nat Protoc. 5. 479–490. https://doi.org/10.1038/nprot.2009.233 | spa |
dcterms.references | Konsue, W., Dethoup, T., & Limtong, S. (2020). Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030317 | spa |
dcterms.references | Kusari. P., Kusari. S., Spiteller. M., & Kayser. O. (2013). Endophytic fungi harbored in Cannabis sativa L: Diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Diversity. 60(1). 137–151. https://doi.org/10.1007/s13225-012-0216-3 | spa |
dcterms.references | Landero-Valenzuela, N., Lara-Viveros, F. M., Andrade-Hoyos, P., Aguilar-Pérez, L. A., & Aguado Rodríguez, G. J. (2017). Alternativas para el control de Colletotrichum spp. Revista Mexicana de Ciencias Agrícolas, 7(5), 1189. https://doi.org/10.29312/remexca.v7i5.245 | spa |
dcterms.references | Landum, M. C., Félix, M. do R., Alho, J., Garcia, R., Cabrita, M. J., Rei, F., & Varanda, C. M. R. (2016). Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research, 183, 100–108. https://doi.org/10.1016/j.micres.2015.12.001 | spa |
dcterms.references | Latz, M. A., Jensen, B., Collinge, D.B & Jørgensen, H. J. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression, Plant Ecology & Diversity, DOI: 10.1080/17550874.2018.1534146 | spa |
dcterms.references | Latz, M.A.C., Jensen, B., Collinge, D.B., Jørgen Lyngs Jørgensen, H., (2019). Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach, Biological Control, 1-34. doi: https://doi.org/10.1016/j.biocontrol.2019.104128 | spa |
dcterms.references | Li, W. Y., Liu, Y., Lin, Y. T., Liu, Y. C., Guo, K., Li, X. N., … Li, S. H. (2020). Antibacterial harziane diterpenoids from a fungal symbiont Trichoderma atroviride isolated from Colquhounia coccinea var. mollis. Phytochemistry, 170. https://doi.org/10.1016/j.phytochem.2019.112198 | spa |
dcterms.references | Lima. W. G., Spósito. M. B., Amorim. L., Gonçalves. F. P., & de Filho. P. A. M. (2011). Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. European Journal of Plant Pathology. 131(1). 157–165. https://doi.org/10.1007/s10658-011-9795-1 | spa |
dcterms.references | Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.x | spa |
dcterms.references | López-González, R. C., Gómez-Cornelio, S., De la Rosa-García, S. C., Garrido, E., Oropeza-Mariano, O., Heil, M., & Partida-Martínez, L. P. (2017). The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecology, 26, 1–10. https://doi.org/10.1016/j.funeco.2016.11.004 | spa |
dcterms.references | Martinez. E., Hio. J., Osorio. J., & Torre. M.F. (2009). Identification of Colletotrichum species causing anthracnose on Tahiti lime, tree tomato and mango. Agronomía Colombiana 27(2). 211-218. | spa |
dcterms.references | Martínez-Alcántara, B., & Quiñones, A. (2018). Efecto bioestimulante de diferentes productos en cítricos. Vida rural, (446), 44-49. | spa |
dcterms.references | Mercier, J & Smilanick, J.L (2005). Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biological control. 32, 3: 401-407. https://doi.org/10.1016/j.biocontrol.2004.12.002 | spa |
dcterms.references | Mikeal L. Roose, Frederick G. Gmitter Jr., Richard Lee, Kim Hummer, Marcos Machado, Sarah Ashmore, & François Luro. (2015). Development of a global conservation strategy for citrus genetic resources. Acta Horticulturae, (1065), 75-83. doi:10.17660/actahortic.2015.1065.7 | spa |
dcterms.references | Mogollón, ÁM., López, C. N., & Orduz, J. O. (2021). Efecto de las variables meteorológicas sobre la antracnosis (Colletotrichum acutatum) de la lima ácida Tahití en el piedemonte llanero, Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 45, 250–259. doi: 10.18257/raccefyn.1237 | spa |
dcterms.references | Mohammadi, P., Tozlu, E., Kotan, R., & Şenol Kotan, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(3), 134–143. https://doi.org/10.17221/55/2016-PPS | spa |
dcterms.references | Monteiro, M. C. P., Tavares, D. G., Nery, E. M., de Queiroz, M. V., Pereira, O. L., & Cardoso, P. G. (2020). Enzyme production by Induratia spp. isolated from coffee plants in Brazil. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324- 2020180673 | spa |
dcterms.references | Moore, G. A. (2001). Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends in Genetics, 17(9), 536–540. doi:10.1016/s0168-9525(01)02442-8 | spa |
dcterms.references | Mousa, W. K., & Raizada, M. N. (2013). The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective. Frontiers in Microbiology, 4. https://doi.org/10.3389/fmicb.2013.00065 | spa |
dcterms.references | Munir, S., Li, Y., He, P., Huang, M., He, P., He, P., … He, Y. (2020). Core endophyte communities of different citrus varieties from citrus growing regions in China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60350-6 | spa |
dcterms.references | Murcia, N., Martínez, M. F., Orduz, J. O., Ríos, L., López Galé, Y., Yacomelo Hernández, M. J., Carabalí, A., Kondo, T., García, M. C., Mesa, N. C., López, J., Pérez, L., Rodríguez, D. M., Montes, J. M., Betancourt, M., Rodríguez, I. V., Barreto, J. A., Tarazona, R., Mateus Cagua, D. M., et al. (2020). Modelo productivo de lima ácida Tahití (Citrus × latifoliaTanaka ex Q. Jiménez) para Colombia. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). DOI: https://doi.org/10.21930/agrosavia.model.7403435 | spa |
dcterms.references | Nandy, S., Das, T., Tudu, C. K., Pandey, D. K., Dey, A., & Ray, P. (2020). Fungal endophytes: Futuristic tool in recent research area of phytoremediation. South African Journal of Botany, 134, 285–295. https://doi.org/10.1016/j.sajb.2020.02.015 | spa |
dcterms.references | Nath, A. (2018). Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. Journal of Applied Biology & Biotechnolog. 1(5): 1-5. https://doi.org/10.7324/jabb.2018.60109 | spa |
dcterms.references | Ochoa, G.F., Martínez, E., Ramírez, R, & Correa, G, L. (2012). Crecimiento y desarrollo de la lima ácida (Citrus latifolia tanaka), cv. tahití, en suelos con limitaciones por profundidad efectiva, en un bosque seco tropical. Revista Facultad Nacional de Agronomía - Medellín, 65(2), 6567–6578. | spa |
dcterms.references | Orduz, R., Javier Orlando; León, Guillermo A.; Arango W., Laura Victoria. (2009). Lima ácida Tahití: opción agrícola para los Llanos Orientales de Colombia. Corpoica. 2009. 16 p. | spa |
dcterms.references | Ortega, H. E., Torres-Mendoza, D., & Cubilla-Rios, L. (2020, August 1). Patents on endophytic fungi for agriculture and bio-and phytoremediation applications. Microorganisms. MDPI AG. https://doi.org/10.3390/microorganisms8081237 | spa |
dcterms.references | Palou. L., Smilanick. J. L., & Droby. S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Review. https://doi.org/10.2212/spr.2008.2.2 | spa |
dcterms.references | Pekas, A. (2011). Biological pest control in citrus an alternative to chemical pesticides with benefits for essential oil quality. IFEAT International Conference; Barcelona. Spain. pp. 115- 124. | spa |
dcterms.references | Pena, L.C.; Jung, L.F.; Savi, D.C.; Servienski, A.; Aluizio, R.; Goulin, E.H.; Galli- Terasawa, L.V.; Lameiro de Noronha Sales Maia, B.H.; Annies, V.; Cavichiolo Franco, C.R.; et al. (2017). A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth. J. Plant Diseases and Protection, 124, 349–360. | spa |
dcterms.references | Peres, N. A. R., Souza, N. L., Peever, T. L., & Timmer, L. W. (2004). Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease, 88(2), 125–130. https://doi.org/10.1094/PDIS.2004.88.2.125 | spa |
dcterms.references | Peres, N. A., MacKenzie, S. J., Peever, T. L., & Timmer, L. W. (2008). Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Phytopathology, 98(3), 345–352. https://doi.org/10.1094/PHYTO-98-3-0345 | spa |
dcterms.references | Peters, L. P., Prado, L. S., Silva, F. I. N., Souza, F. S. C., & Carvalho, C. M. (2020). Selection of endophytes as antagonists of Colletotrichum gloeosporioides in açaí palm. Biological Control, 150. https://doi.org/10.1016/j.biocontrol.2020.104350 | spa |
dcterms.references | Piccirillo, G., Carrieri, R., Polizzi, G., Azzaro, A., Lahoz, E., Fernández-Ortuño, D., & Vitale, A. (2018). In vitro and in vivo activity of QoI fungicides against Colletotrichum gloeosporioides causing fruit anthracnose in Citrus sinensis. Scientia Horticulturae, 236, 90–95. doi:10.1016/j.scienta.2018.03.044 | spa |
dcterms.references | Platania, C., Restuccia, C., Muccilli, S., & Cirvilleri, G. (2012). Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Food Microbiology, 30(1), 219–225. doi:10.1016/j.fm.2011.12.010 | spa |
dcterms.references | Pimenta, R. S., Silva, F. L., Silva, J. F. M., Morais, P. B., Braga, D. T., Rosa, C. A., & Corrêa Jr., A. (2008). Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Brazilian Journal of Microbiology, 39(1), 85–90 | spa |
dcterms.references | Prabakar, K., Raguchander, T., Parthiban, V. K., Muthulakshmi, P. & Prakasam, V. (2005). Post harvest fungal spoilage in mango at different levels marketing. Madras Agric. J., 92(1-3): 42-48. | spa |
dcterms.references | Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science. 362, 908. https://doi.org/10.1126/science.aav0294 | spa |
dcterms.references | Price. C. L., Parker. J. E., Warrilow. A. G., Kelly. D. E., & Kelly. S. L. (2015). Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science. 71(8). 1054–1058. doi:10.1002/ps.4029 | spa |
dcterms.references | Rana, K. L., Kour, D., Sheikh, I., Yadav, N., Yadav, A. N., Kumar, V., … Saxena, A. K. (2019). Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems with Applications to Fuel Cells, 105–144. doi:10.1007/978-3-030-03589-1_6 | spa |
dcterms.references | Rajamanikyam, M., Vadlapudi, V., Amanchy, R., & Upadhyayula, S. M. (2017). Endophytic fungi as novel resources of natural therapeutics. Brazilian Archives of Biology and Technology, 60. https://doi.org/10.1590/1678-4324-2017160542 | spa |
dcterms.references | Rajani, P., Rajasekaran, C., Vasanthakumari, M. M., Olsson, S. B., Ravikanth, G., & Uma Shaanker, R. (2021). Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiological Research, 242. https://doi.org/10.1016/j.micres.2020.126595 | spa |
dcterms.references | Rajput, N., Atiq, M., Tariq, H., Modassar, W., & Hameed, A. (2020). Citrus Gummosis: A Formidable Challenge to Citrus Industry: A Review. International Journal Biosciences,16, 131–144. | spa |
dcterms.references | Rampersaud, G. C., & Valim, M. F. (2015). 100% citrus juice: Nutritional contribution, dietary benefits, and association with anthropometric measures. Critical Reviews in Food Science and Nutrition, 57(1), 129–140. doi:10.1080/10408398.2013.862611 | spa |
dcterms.references | Ramos, A. P., Talhinhas, P., Sreenivasaprasad, S., & Oliveira, H. (2016). Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 44(4), 549–561. https://doi.org/10.1007/s12600-016-0537-y | spa |
dcterms.references | Renaud, M.S.A., Amorim, L., Lourenço, S.A., & Spósito, M.B. (2008). Diagrammatic scale for assessment of Alternaria Brown spot of citrus. Summa Phytopathologica, v.34, n.3, p.270-271. | spa |
dcterms.references | Rhaiem, A., & Taylor, P. W. J. (2016). Colletotrichum gloeosporioides associated with anthracnose symptoms on citrus, a new report for Tunisia. European Journal of Plant Pathology, 146(1), 219–224. https://doi.org/10.1007/s10658-016-0907-9 | spa |
dcterms.references | Ríos-Rojas, L., Correa, J. F., Rojas-Marín, C. A., & Dorado-Guerra, D. Y. (2018). Edaphoclimatic characterization of the productive zone of Tahiti lime (Citrus latifolia Tanaka) in Tolima (Colombia) affected by a physiopathy. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 569-591. DOI: https://doi.org/10.21930/rcta.vol19_num3_art:862 | spa |
dcterms.references | Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles: Tansley review. New Phytologist. 182: 314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x | spa |
dcterms.references | Rodríguez, P; Ramírez, M; Bautista, S; Triana, A.C & Rivero, D. (2012). Actividad antifúngica de extractos de Acacia farnesiana sobre el crecimiento in vitro de Fusarium oxysporum f. sp. Lycopersici. Revista Científica UDO Agrícola 12(1): 91-96. | spa |
dcterms.references | Rojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., and Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144. https://doi.org/10.1016/j.biocontrol.2020.104222 | spa |
dcterms.references | Ruiz A, Parra CC, da Graça JV, Salas B, Malik NSAy Kunta M. 2014. Caracterización molecular y de ensayos de patogenicidad de Colletorichum acutatum, agente causal de la antracnosis del limón en Texas. Revista Mexicana de Fitopatología 32: 52-61. | spa |
dcterms.references | Sáenz Pérez, C. A., Osorio Hernández, E., Estrada Drouaillet, B., Poot Poot, W. A., Delgado Martínez, R., & Rodríguez Herrera, R. (2019). Principales enfermedades de los cítricos. Revista Mexicana de Ciencias Agrícolas, 10(7), 1653–1665. https://doi.org/10.29312/remexca.v10i7.1827 | spa |
dcterms.references | Sánchez, R., Sánchez, L. B., Sandoval, M.Y., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García, M., & Macías, L. M. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP, 16(2), 132–146. https://doi.org/10.1016/s1405-888x(13)72084-9 | spa |
dcterms.references | Santos, P. J. C. D., Savi, D. C., Gomes, R. R., Goulin, E. H., Da Costa Senkiv, C., Tanaka, F. A. O., … Glienke, C. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186–187, 153– 160. https://doi.org/10.1016/j.micres.2016.04.002 | spa |
dcterms.references | Saunders, M., Glenn, A. E., & Kohn, L. M. (2010). Exploring the evolutionary ecology of fungal endophytes in agricultural systems: Using functional traits to reveal mechanisms in community processes. Evolutionary Applications, 3(5–6), 525–537. https://doi.org/10.1111/j.1752-4571.2010.00141.x | spa |
dcterms.references | Segaran. G., & Sathiavelu. M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.bcab.2019.101284 | spa |
dcterms.references | Selim KA, El-Beih AA, AbdEl-Rahman TM, El-Diwany AI. (2012). Biology of Endophytic Fungi. Current Research in Environmental & Applied Mycology 2(1), 31–82, Doi 10.5943/cream/2/1/3 | spa |
dcterms.references | Serrano, R., González-Menéndez, V., Rodríguez, L., Martín, J., Tormo, J. R., and Genilloud, O. (2017). Co-culturing of fungal strains against Botrytis cinerea as a model for the induction of chemical diversity and therapeutic agents. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00649 | spa |
dcterms.references | Shin, Y. H., Ko, E. J., Kim, S. J., Hyun, H. N., & Jeun, Y. C. (2019). Suppression of melanose caused by Diaporthe citri on citrus leaves pretreated with bio-sulfur. Plant Pathology Journal, 35(5), 417–424. https://doi.org/10.5423/PPJ.OA.03.2019.0067 | spa |
dcterms.references | Shi, X. C., Wang, S. Y., Duan, X. C., Wang, Y. Z., Liu, F. Q., & Laborda, P. (2021). Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop Protection. Elsevier Ltd. https://doi.org/10.1016/j.cropro.2020.105454 | spa |
dcterms.references | Shivakumar, K., Palaiah, P., Sunnkad, G., Mallesh, S., & Pampanna, Y. (2016). Pathogenicity of different isolates of anthracnose of mango caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Journal of FARM SCIENCES, 28(4). | spa |
dcterms.references | Silva-Junior, G. J., Spósito, M. B., Marin, D. R., Ribeiro-Junior, P. J., & Amorim, L. (2014). Spatiotemporal characterization of citrus postbloom fruit drop in Brazil and its relationship to pathogen dispersal. Plant Pathology, 63(3), 519–529. https://doi.org/10.1111/ppa.12138 | spa |
dcterms.references | Suwannarach, N., Kumla, J., Bussaban, B., Nuangmek, W., Matsui, K., & Lumyong, S. (2013). Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection, 45, 63–70. https://doi.org/10.1016/j.cropro.2012.11.015 | spa |
dcterms.references | Tabti, L., El Amine Dib, M., Djabou, N., Benyelles, N. G., Paolini, J., Costa, J., & Muselli, A. (2014). Control of fungal pathogens of citrus sinensis L. by essential oil and hydrosol of Thymus capitatus L. Journal of Applied Botany and Food Quality, 87, 279–285. https://doi.org/10.5073/JABFQ.2014.087.039 | spa |
dcterms.references | Talibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology. 117, 1- 17. https://doi.org/10.1111/jam.12495 | spa |
dcterms.references | Tennant. P. F., Robinson. D., Fisher. L., Bennett. S.-M., Hutton. D., Coates-Beckford. P., & Mc Laughlin. W. (2009). Diseases and Pests of Citrus (Citrus spp.). Tree and Forestry Science and Biotechnology. 3. 81–107. | spa |
dcterms.references | Tibpromma, S., Hyde, K. D., Bhat, J. D., Mortimer, P. E., Xu, J., Promputtha, I., & Karunarathna, S. C. (2018). Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys, 33, 25–67. https://doi.org/10.3897/mycokeys.33.23670 | spa |
dcterms.references | Timmer L.W., Mondal. S.N., Peres, N. & Bhatia, A. (2004). Fungal Diseases of fruit and foliage of Citrus tres. In. Naqvi S.A (eds). Diseases of fruits and vegetables, Volume I. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2606-4_3. | spa |
dcterms.references | Triaca, T., Cavião, H,C., Pansera, M.R., Venturin, L., & Sartori, V.C. (2018). Detection of antifungal activity of plant extracts on Alternaria citrus. Summa Phytopathologica, 44 (2): 185- 188. | spa |
dcterms.references | Trujillo, N.E. (2010). Biocontrol de hongos fitopatógenos en cítricos. CienciaUAT, 4(3),20-23. https://www.redalyc.org/articulo.oa?id=441942919007 | spa |
dcterms.references | Turner, T., & Burri, B. J. (2013). Potential nutritional benefits of current citrus consumption. Agriculture (Switzerland), 3(1), 170–187. https://doi.org/10.3390/agriculture3010170 | spa |
dcterms.references | Vargas, W., Sanz, J.M., Rech, G.E., Rivera, P., Benito, E., Díaz, J.M., Thon, M. R. and Sukno, S. (2012). Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize. Plant Physiology. 158 (3), 1342-1358. DOI: https://doi.org/10.1104/pp.111.190397 | spa |
dcterms.references | Villavicencio-Vásquez, M., Espinoza-Lozano, R. F., Pérez-Martínez, S., & Sosa Del Castillo, D. (2018). Foliar endophyte fungi as candidate for biocontrol against moniliophthora spp. of theobroma cacao (malvaceae) in Ecuador. Acta Biologica Colombiana, 23(3), 235–241. https://doi.org/10.15446/abc.v23n3.69455 | spa |
dcterms.references | Wang. Z., Jiang. M., Chen. K., Wang. K., Du. M., Zalán. Z., & Kan. J. (2018). Biocontrol of Penicillium digitatum on Postharvest Citrus Fruits by Pseudomonas fluorescens. Journal of Food Quality. 2018. https://doi.org/10.1155/2018/2910481 | spa |
dcterms.references | Wang. Z., Sui. Y., Li. J., Tian. X., & Wang. Q. (2020). Biological control of postharvest fungal decays in citrus: a review. Critical Reviews in Food Science and Nutrition. Bellwether Publishing. Ltd. https://doi.org/10.1080/10408398.2020.1829542 | spa |
dcterms.references | Wang, W., de Silva, D. D., Moslemi, A., Edwards, J., Ades, P. K., Crous, P. W., et al. (2021). Colletotrichum species causing anthracnose of citrus in australia. J. Fungi 7, 1–24. doi: 10.3390/jof7010047 | spa |
dcterms.references | Wharton, P., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales Del Jardín Botánico de Madrid, 61(1), 3–22. https://doi.org/10.3989/ajbm.2004.v61.i1.61 | spa |
dcterms.references | Yadav, A, N. (2018). Biodiversity and Biotechnological Applications of Host-Specific Endophytic Fungi for Sustainable Agriculture and Allied Sectors. Acta Scientific Microbiology 1.5 (2018) 01-05 | spa |
dcterms.references | Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology. Springer Verlag. https://doi.org/10.1007/s00253-019-09713-2 | spa |
dcterms.references | Yoon. M. Y., Cha. B., & Kim. J. C. (2013). Recent trends in studies on botanical fungicides in agriculture. The plant pathology journal. 29(1). 1–9. https://doi.org/10.5423/PPJ.RW.05.2012.0072 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_71e4c1898caa6e32 | spa |
Archivos
Paquete original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Hongos_Endófitos_de_Lima_Tahití_(Citrus_citrus_x_latifolia)_y_su_Utilidad_en_el_Biocontrol (1).pdf
- Tamaño:
- 2.53 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento Principal
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 59 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: