Publicación:
Hongos Endófitos de Lima Tahití (citrus citrus x latifolia) y su Utilidad en el Biocontrol de Colletotrichum acutatum Causante de Antracnosis

dc.contributor.advisorGuerra Sierra, Beatriz Elena
dc.contributor.authorMuñoz Guerrero, Jaider
dc.date.accessioned2021-09-10T16:19:08Z
dc.date.available2021-09-10T16:19:08Z
dc.date.issued2021-09-06
dc.descriptionDigitalspa
dc.description.abstractColletotrichum acutatum es uno de los agentes causales de la antracnosis que se caracteriza por lesiones en hojas y sobre todo en flores y frutos, de varios cultivos como los cítricos. El patógeno normalmente ataca a las flores, provocando graves lesiones. En condiciones muy favorables, puede afectar los botones florales y los frutos pequeños, provocando una pudrición completa y una caída prematura, lo que resulta en importantes pérdidas económicas en las cosechas. Los objetivos de este trabajo fueron: 1) identificar la diversidad de hongos endófitos en muestras vegetales de lima Tahití; 2) evaluar la capacidad antagonista de estos hongos frente al fitopatógeno Colletotrichum acutatum C-100 en pruebas duales; 3) evaluar la capacidad de diferentes especies de hongos endofíticos para controlar flores con antracnosis inducida y 4) identificar molecularmente las cepas fúngicas con mayor actividad inhibitoria para Colletotrichum acutatum. Se obtuvieron 138 aislados fúngicos a partir de 486 fragmentos de ramas, hojas y frutos; de las cuales se identificaron 15 morfoespecies. Se encontró una mayor frecuencia de morfoespecies en ramas y hojas, con un nivel de diversidad comparable con lo reportado en otras especies de cítricos. De las 15 morfoespecies, 5 se probaron contra Colletotrichum acutatum en pruebas de antagonismo, lo que resultó en un hallazgo de inhibición positiva. Solo 2 hongos endofíticos de las pruebas de antagonismo demostraron una alta inhibición del fitopatógeno, por lo que se utilizaron en pruebas in vivo con flores de lima Tahití, aplicadas en una solución de esporas. Estos hongos fueron identificados molecularmente como Xylaria adscendens y Trichoderma atroviride, los cuales redujeron considerablemente las lesiones provocadas por el fitopatógeno en estas pruebas in vivo. El hallazgo de que los endófitos reaccionaran de manera antagónica contra Colletotrichum acutatum, demuestra su capacidad y utilidad como biocontroladores de antracnosis, convirtiéndolos en especies promisorias para futuras investigaciones en campo y desarrollo biotecnológico, apuntando a una agroindustria que requiere sostenibilidad ambiental.spa
dc.description.abstractColletotrichum acutatum is one of the causative agents of anthracnose characterized by lesions on leaves and especially on flowers and fruits, of various crops such as citrus. The pathogen normally attacks flowers, causing serious injury. Under very favorable conditions, it can affect flower buds and small fruits, causing complete rot and premature fall, resulting in significant economic losses in crops. The objectives of this work were: 1) to identify the diversity of endophytic fungi in Tahiti lime plant samples; 2) evaluate the antagonistic capacity of these fungi against the phytopathogen Colletotrichum acutatum C-100 in dual tests; 3) evaluate the capacity of different species of endophytic fungi to control flowers with induced anthracnose and 4) molecularly identify the fungal strains with the highest inhibitory activity for Colletotrichum acutatum. 138 fungal isolates were obtained from 486 fragments of branches, leaves and fruits; of which 15 morphospecies were identified. A higher frequency of morphospecies was found in branches and leaves, with a level of diversity comparable to that reported in other citrus species. Of the 15 morphospecies, 5 were tested against Colletotrichum acutatum in antagonism tests, resulting in a positive inhibition finding. Only 2 endophytic fungi from the antagonism tests demonstrated high inhibition of the phytopathogen, which is why they were used in in vivo tests with Tahiti lime flowers, applied in a spore solution. These fungi were molecularly identified as Xylaria adscendens and Trichoderma atroviride, which considerably reduced the lesions caused by the phytopathogen in these in vivo tests. The finding that endophytes reacted in an antagonistic way against Colletotrichum acutatum, demonstrates their capacity and usefulness as anthracnose biocontrollers, making them promising species for future field research and biotechnological development, pointing to an agribusiness that requires environmental sustainability.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Biotecnologíaspa
dc.description.edition1 ed.spa
dc.description.tableofcontents1. Introducción 14 2.Objetivos 17 2.1.General 17 2.2.Específicos 17 3.Marco Teórico 18 3.1.Generalidades de los Citricultivos 18 3.3.Agricultura sostenible y control biológico en cítricos 25 3.6.Control biológico contra especies de Colletotrichum usando hongos endófitos 36 4.Metodología 41 4.1.Área de estudio y colección de muestras vegetales 41 4.2.Aislamiento de hongos endófitos 42 4.3.Frecuencia de colonización y frecuencia relativa de aislamiento 43 4.5.Análisis de diversidad 44 4.7.Ensayos in vivo en flores de lima Tahití y estimación de severidad 46 4.8.Aislamiento de ADN de hongos e identificación molecular 50 5.Resultados y discusión 52 5.1.Aislamiento de hongos endófitos y frecuencia de colonización 52 5.2.Caracterización morfológica 53 5.3.Análisis de diversidad 58 5.5.Ensayos in vivo: inhibición de antracnosis en flores de lima Tahití 66 5.6.Identificación molecular de hongos endofíticos antagonistas 72 6.Conclusiones 77 Referencias Bibliográficas 79spa
dc.format.extent99 pspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.localT 91.21 M866h
dc.identifier.urihttps://repositorio.udes.edu.co/handle/001/5610
dc.language.isospaspa
dc.publisherBucaramanga : Universidad de Santander, 2021spa
dc.publisher.facultyFacultad de Ciencias Exactas, Naturales y Agropecuariasspa
dc.publisher.placeBucaramanga, Colombiaspa
dc.publisher.programMaestría en Biotecnologíaspa
dc.rightsDerechos Reservados - Universidad de Santander, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.proposalCítricosspa
dc.subject.proposalFúngicospa
dc.subject.proposalFitopatógenospa
dc.subject.proposalAntagonismospa
dc.subject.proposalBioactividadspa
dc.subject.proposalCitruseng
dc.subject.proposalFungaleng
dc.subject.proposalPhytopathogeniceng
dc.subject.proposalAntagonismeng
dc.subject.proposalBioactivityeng
dc.titleHongos Endófitos de Lima Tahití (citrus citrus x latifolia) y su Utilidad en el Biocontrol de Colletotrichum acutatum Causante de Antracnosisspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceTodas las Audienciasspa
dcterms.referencesAbo, F.A. (2019). Endophytic fungi for sustainable agriculture. Microbial Biosystems, 4(1), 31–44. https://doi.org/10.21608/mb.2019.38886spa
dcterms.referencesAbro, M. A., Sun, X., Li, X., Jatoi, G. H., & Guo, L. D. (2019). Biocontrol potential of fungal endophytes against fusarium oxysporum f. Sp. cucumerinum causing wilt in cucumber. Plant Pathology Journal, 35(6), 598–608. https://doi.org/10.5423/PPJ.OA.05.2019.0129spa
dcterms.referencesAiello, D., Carrieri, R., Guarnaccia, V., Vitale, A., Lahoz, E., & Polizzi, G. (2015). Characterization and pathogenicity of colletotrichum gloeosporioides and C. karstii causing preharvest disease on citrus sinensis in Italy. Journal of Phytopathology, 163(3), 168–177. https://doi.org/10.1111/jph.12299spa
dcterms.referencesAlwedyan, S., & Taani, A. (2020). Citrus Farmers Adoption of Sustainable Agriculture Practices and Its Determinants in the Jordan Valley: The Case of Northern Ghor. Journal of Sustainable Development, 14(1), 36. https://doi.org/10.5539/jsd.v14n1p36spa
dcterms.referencesAgibe, S. O. (2019). Endophytic Acremonium zeae and Xylaria adscendens in Crops: A Review. Global Scientific Journal. 7,7: 1003-1007.spa
dcterms.referencesAly AH, Debbab A, & Proksch P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 90(6):1829-1845. iqspa
dcterms.referencesAra, I., Rizwana, M., Othman, A. & Bakir, A. (2012). Studies of actinomycetes for biological control of Colletotrichum musae pathogen during post harvest anthracnose of banana. African Journal of Microbiology Research, 6(17). https://doi.org/10.5897/ajmr12.088spa
dcterms.referencesArias, F., & Suarez, E. (2016). Comportamiento de las exportaciones de limón persa (Citrus latifolia tanaka) al mercado de los Estados Unidos. Journal of Agriculture and Animal Sciences, 5(2): 20–31.spa
dcterms.referencesArias. B., Yañez. V., Carrizales. L., & Sánchez. M. (2006). Hongos asociados a la caída prematura de frutos en lima persa (Citrus latifolia tan.) y evaluación de su control químico. Bioagro. 18:31.39.spa
dcterms.referencesArora. N. K. (2018). Agricultural sustainability and food security. Environmental Sustainability. 1(3). 217–219. https://doi.org/10.1007/s42398-018-00032-2spa
dcterms.referencesBalamurugan, S. (2014). In Vitro Antifungal Activity of Citrus aurantifolia Linn Plant Extracts against Phytopathogenic Fungi Macrophomina phaseolina. International Letters of Natural Sciences, 13, 70–74. https://doi.org/10.18052/www.scipress.com/ilns.13.70spa
dcterms.referencesBamisile BS, Dash CK, Akutse KS, Keppanan R & Wang L (2018). Fungal Endophytes: Beyond Herbivore Management. Front. Microbiol. 9:544. doi: 10.3389/fmicb.2018.00544spa
dcterms.referencesBarnett. H. L., & Hunter. B. B. (1998). Illustrated genera of imperfect fungi. St. Paul. Minnesota. USA: The American Phytopathological Societyspa
dcterms.referencesBarquero. M., Perez. N., & Arauz. L. (2013). Presencia de Colletotrichum acutatum y Colletotrichum gleosporoides en Helecho Hoja De Cuero. Limón Criollo. Papaya. Carambola Y Mango En Costa Rica Y Florida (Estados Unidos). Agronomía Costarricense. 37(1). 23–38.spa
dcterms.referencesBazioli. J. M., Costa. J. H., Akiyama. D. Y., Pontes. D. M., Kupper. K. C., & Augusto. F. (2019). Biological Control of Citrus Postharvest Phytopathogens. Toxins. 11(8). DOI: 10.3390/toxins11080460.spa
dcterms.referencesBen Hadj Daoud H., Baraldi E., Iotti M., Leonardi P., & Boughalleb- M’Hamdi N. (2019) Characterization and pathogenicity of Colletotrichum spp. causing citrus anthracnose in Tunisia. Phytopathologia Mediterranea. 58(1): 175-185. doi: 10.13128/Phytopathol_ Mediterr-23762spa
dcterms.referencesBrodt, S., Six, J., Feenstra, G., Ingels, C. & Campbell, D. (2011) Sustainable Agriculture. Nature Education Knowledge 3(10):1.spa
dcterms.referencesCannon. P. F., Damm. U., Johnston. P. R., & Weir. B. S. (2012). Colletotrichum - current status and future directions. Studies in Mycology. 73. 181–213. https://doi.org/10.3114/sim0014spa
dcterms.referencesCantillo, K., Maury, S., Rincón, K and Vargas. G. (2018). Microorganismos como biocontroladores de fitopatógenos en poscosecha de cítricos. Microciencia, Investigación, Desarrollo e Innovación, 7: 9-20.spa
dcterms.referencesCaruso, G., Golubkina, N., Tallarita, A., Abdelhamid, M. T., & Sekara, A. (2020, November 1). Biodiversity, ecology, and secondary metabolites production of endophytic fungi associated with amaryllidaceae crops. Agriculture (Switzerland). MDPI AG. https://doi.org/10.3390/agriculture10110533spa
dcterms.referencesChao. A., Chazdon. R. L., & Shen. T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters. 8(2). 148– 159. https://doi.org/10.1111/j.1461-0248.2004.00707.xspa
dcterms.referencesChauhan, N. M., Gutama, A. D., & Aysa, A. (2019). Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiology, 19(1). https://doi.org/10.1186/s12866-019-1547-yspa
dcterms.referencesChechi, A., Stahlecker, J., Dowling, M. E., & Schnabel, G. (2019). Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology, 158, 18–24. https://doi.org/10.1016/j.pestbp.2019.04.002spa
dcterms.referencesChen, S. N., Luo, C. X., Hu, M. J., & Schnabel, G. (2016). Sensitivity of colletotrichum species, including C. Fioriniae and C. Nymphaeae, from peach to demethylation inhibitor fungicides. Plant Disease, 100(12). https://doi.org/10.1094/PDIS-04-16-0574-REspa
dcterms.referencesChi, X., Yan, S., Chu, X., Wang, Y., Quan, F, & Laborda, P. (2021). Biocontrol strategies for the management of Colletotrichum species in postharvest fruits, Crop Protection,141, 105454. https://doi.org/10.1016/j.cropro.2020.105454spa
dcterms.referencesChoudhary, B., Nagpure, A., & Gupta, R. K. (2015). Biological control of toxigenic citrus and papaya-rotting fungi byStreptomyces violascensMT7 and its extracellular metabolites. Journal of Basic Microbiology, 55(12), 1343–1356. doi:10.1002/jobm.201500323spa
dcterms.referencesChung K. R. (2011). Elsinoë fawcettii and Elsinoë australis: the fungal pathogens causing citrus scab. Molecular plant pathology, 12(2), 123–135. https://doi.org/10.1111/j.1364- 3703.2010.00663.xspa
dcterms.referencesCole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Tiedje, J. M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(D1). https://doi.org/10.1093/nar/gkt1244spa
dcterms.referencesCurk, F., Ollitrault, F., Garcia-Lor, A., Luro, F., Navarro, L., & Ollitrault, P. (2016). Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany, 117(4), 565–583. https://doi.org/10.1093/aob/mcw005spa
dcterms.referencesDANE. 2015. Cultivo del limón o lima Tahití (Citrus latifolia Tanaka) frente a los efectos de las condiciones climáticas adversas. Boletín mensual. Nº 41. 93 pp. Tomado en 10-01- 2021 de: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_nov_2015.pdfspa
dcterms.referencesDa Costa Silveira. A. A., Araújo. L. G., de Fillipi. M. C. C., & Sibov. S. T. (2020). Isolation. identification and characterization of endophytic fungi of Bambusa oldhamii munro applied as antagonists to Pyricularia oryzae. Revista Ceres. 67(4). 296–305. https://doi.org/10.1590/0034-737X202067040007spa
dcterms.referencesDa Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F., & de Queiroz, M. V. (2020). Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Applied Microbiology and Biotechnology. Springer. https://doi.org/10.1007/s00253- 020-10363-yspa
dcterms.referencesDeng, L., Zeng, K., Zhou, Y., & Huang, Y. (2015). Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. European Food Research and Technology, 240(4), 795–804. https://doi.org/10.1007/s00217-014-2385-7spa
dcterms.referencesDe Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews. 31, 3: 155-168. Elsevier Ltd. https://doi.org/10.1016/j.fbr.2017.05.001spa
dcterms.referencesDe Silva, N. I., Brooks. S., Lumyong. S., & Hyde. K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews. 33 (2): 133-148. https://doi.org/10.1016/j.fbr.2018.10.001spa
dcterms.referencesDonkersley. P., Silva. F. W. S., Carvalho. C. M., Al-Sadi. A. M., & Elliot. S. L. (2018). Biological environmental and socioeconomic threats to citrus lime production. Journal of Plant Diseases and Protection. Springer Berlin Heidelberg. https://doi.org/10.1007/s41348-018-0160-xspa
dcterms.referencesDos Santos CM, Ribeiro AS, Garcia A, Polli AD, Polonio JC, Azevedo JL, Pamphile JA. (2019). Enzymatic and antagonist activity of endophytic fungi from Sapindus saponaria L. (Sapindaceae). Acta biol. Colomb; 24(2):322-330. DOI: http://dx.doi.org/10.15446/abc. v24n2.74717spa
dcterms.referencesDroby. S., Wisniewski. M., Macarisin. D., & Wilson. C. (2009). Twenty years of postharvest biocontrol research: ¿Is it time for a new paradigm? Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2008.11.009spa
dcterms.referencesEstrada. S.G., & Ramírez. G.M. (2019). Micología General. Manizales: Centro Editorial Universidad Católica de Manizales.spa
dcterms.referencesEvans, E. A., Ballen, F. H., & Crane, J. H. (2014). Economic potential of producing tahiti limes in Southern Florida in the presence of citrus canker and citrus greening. HortTechnology, 24(1), 99–106. https://doi.org/10.21273/horttech.24.1.99spa
dcterms.referencesFAO (Food and Agriculture Organization of the United Nations) (2015). Citrus fruit statistics. 56 páginas. Consulado de: http://www.fao.org/3/i5558e/i5558e.pdf, en: 2-04-2021.spa
dcterms.referencesFerraz, L. P., Cunha, T. da, da Silva, A. C., & Kupper, K. C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research, 188-189, 72–79. doi:10.1016/j.micres.2016.04.012spa
dcterms.referencesFerreira, F. V., A. M. Herrmann-Andrade, C. D. Calabrese, F. Bello, D. Vazquez, and M.A. Musumeci. (2020). Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post-harvest oranges [Citrus sinensis L. (Osbeck)]. Journal of Applied Microbiology 129 (3):712–27.spa
dcterms.referencesFlorián, LG., Alvarado, O., Pérez, O., González, R. & Olivares, E. (2019). Fungi associated with the regressive death of citrus fruits in Nuevo Leon and Tamaulipas, Mexico. Revista Mexicana Ciencias Agrícolas. 10, 4: 757-764spa
dcterms.referencesForcelini. B. B., & Peres. N. A. (2018). Widespread resistance to QoI fungicides of Colletotrichum acutatum from strawberry nurseries and production fields. Plant Health Progress. 19(4). 338–341. https://doi.org/10.1094/PHP-08-18-0050-RSspa
dcterms.referencesFrare. G. F., Couto. H. T. Z., Ciampi-Guillardi. M., & Amorim. L. (2016). The causal agent of citrus postbloom fruit drop, Colletotrichum acutatum, can survive on weeds. Australasian Plant Pathology. 45(4). 339–346. https://doi.org/10.1007/s13313-016-0419-2 Gómez G, N., & Eastman Ocampo, J. A. (2018). Exploración de mercados internacionales para la lima tahití producido en la empresa Inversiones El Refugio. Retrieved from https://ciencia.lasalle.edu.co/ administracion_agronegocios/220spa
dcterms.referencesGoulin. E. H., dos Santos. P. J. C., Dalio. R. D., & Machado. M. A. (2019). In vitro symptom induction of Colletotrichum abscissum infection in detached sweet orange flowers. Journal of Plant Pathology. 101(3). 695–699. https://doi.org/10.1007/s42161-018- 00220-3spa
dcterms.referencesGuarnaccia, V., Gehrmann, T., Silva-Junior, G. J., Fourie, P. H., Haridas, S., Vu, D., & Crous, P. W. (2019). Phyllosticta citricarpa and sister species of global importance to Citrus. Molecular Plant Pathology, 20(12), 1619–1635. https://doi.org/10.1111/mpp.12861 Grayum, M., Hammel, B., & Jiménez, Q. (2012). Validation of a scientific name for the tahitian lime. Phytoneuron, 101(November), 1–5. Retrieved from http://www.phytoneuron.net/101PhytoN-Citrus.pdfspa
dcterms.referencesHoang, D. T., Vinh, L. S., Flouri, T., Stamatakis, A., Von Haeseler, A., & Minh, B. Q. (2018). MPBoot: Fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evolutionary Biology, 18(1). https://doi.org/10.1186/s12862-018-1131-3spa
dcterms.referencesHuang, F., Chen, G. Q., Hou, X., Fu, Y. S., Cai, L., Hyde, K. D., & Li, H. Y. (2013). Colletotrichum species associated with cultivated citrus in China. Fungal Diversity, 61(1), 61–74. doi:10.1007/s13225-013-0232-yspa
dcterms.referencesHuang, Q., An, H., Song, H., Mao, H., Shen, W., and Dong, J. (2015). Diversity and biotransformative potential of endophytic fungi associated with the medicinal plant Kadsura angustifolia. Research in Microbiology, 166(1), 45–55. https://doi.org/10.1016/j.resmic.2014.12.004spa
dcterms.referencesHuang, H., Tian, C., Huang, Y. et al. (2020). Biological control of poplar anthracnose caused by Colletotrichum gloeosporioides (Penz.). Egypt J Biol Pest Control 30, 104. https://doi.org/10.1186/s41938-020-00301-5spa
dcterms.referencesIglesias, D. J., Cercós, M., Colmenero-Flores, J. M., Naranjo, M. A., Ríos, G., Carrera, E., & Talon, M. (2011). Ecophysiology of tropical tree crops citrus: An overview of fruiting physiology? In Citrus Fruits: Properties, Consumption and Nutrition (pp. 175–213). Nova Science Publishers, Inc.spa
dcterms.referencesIkram, M., Ali, N., Jan, G., Jan, F. G., & Khan, N. (2019). Endophytic Fungal Diversity and their Interaction with Plants for Agriculture Sustainability Under Stressful Condition. Recent Patents on Food, Nutrition & Agriculture, 11(2), 115–123. https://doi.org/10.2174/2212798410666190612130139spa
dcterms.referencesIshii, H., Zhen, F., Hu, M., Li, X., & Schnabel, G. (2016). Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species. Pest Management Science, 72(10), 1844–1853. https://doi.org/10.1002/ps.4216spa
dcterms.referencesJing, J., Zhang, H., Xue, Y., & Zeng, K. (2020). Effects of INA on postharvest blue and green molds and anthracnose decay in citrus fruit. Journal of Integrative Agriculture, 19(5), 1396–1406. doi:10.1016/s2095-3119(20)63169-0spa
dcterms.referencesJin. H., Yan. Z., Liu. Q., Yang. X., Chen. J., & Qin. B. (2013). Diversity and dynamics of fungal endophytes in leaves. stems and roots of Stellera chamaejasme L. in northwestern China. Antonie van Leeuwenhoek. 104(6). 949–963. doi:10.1007/s10482-013-0014-2spa
dcterms.referencesJuybari, H. Z., Tajick Ghanbary, M. A., Rahimian, H., Karimi, K., & Arzanlou, M. (2019). Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran. Forest Pathology, 49(6). https://doi.org/10.1111/efp.12559spa
dcterms.referencesKaul, S., Sharma, T., & Dhar, M. K. (2016). “Omics” tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00955spa
dcterms.referencesKaur, R., Kaur, J., Kaur, M., Kalotra, V., Chadha, P., Kaur, A., & Kaur, A. (2020). An endophytic Penicillium oxalicum isolated from Citrus limon possesses antioxidant and genoprotective potential. Journal of Applied Microbiology, 128(5), 1400–1413. https://doi.org/10.1111/jam.14553spa
dcterms.referencesKhruengsai, S., Pripdeevech, P., Tanapichatsakul, C., Srisuwannapa, C., D’Souza, P. E., & Panuwet, P. (2021). Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its postharvest infections on strawberry fruits. PeerJ, 9. https://doi.org/10.7717/peerj.11242spa
dcterms.referencesKjer. J., Debbab. A., Aly. A., & Proksch. P. (2010). Methods for isolation of marine- derived endophytic fungi and their bioactive secondary products. Nat Protoc. 5. 479–490. https://doi.org/10.1038/nprot.2009.233spa
dcterms.referencesKonsue, W., Dethoup, T., & Limtong, S. (2020). Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030317spa
dcterms.referencesKusari. P., Kusari. S., Spiteller. M., & Kayser. O. (2013). Endophytic fungi harbored in Cannabis sativa L: Diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Diversity. 60(1). 137–151. https://doi.org/10.1007/s13225-012-0216-3spa
dcterms.referencesLandero-Valenzuela, N., Lara-Viveros, F. M., Andrade-Hoyos, P., Aguilar-Pérez, L. A., & Aguado Rodríguez, G. J. (2017). Alternativas para el control de Colletotrichum spp. Revista Mexicana de Ciencias Agrícolas, 7(5), 1189. https://doi.org/10.29312/remexca.v7i5.245spa
dcterms.referencesLandum, M. C., Félix, M. do R., Alho, J., Garcia, R., Cabrita, M. J., Rei, F., & Varanda, C. M. R. (2016). Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research, 183, 100–108. https://doi.org/10.1016/j.micres.2015.12.001spa
dcterms.referencesLatz, M. A., Jensen, B., Collinge, D.B & Jørgensen, H. J. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression, Plant Ecology & Diversity, DOI: 10.1080/17550874.2018.1534146spa
dcterms.referencesLatz, M.A.C., Jensen, B., Collinge, D.B., Jørgen Lyngs Jørgensen, H., (2019). Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach, Biological Control, 1-34. doi: https://doi.org/10.1016/j.biocontrol.2019.104128spa
dcterms.referencesLi, W. Y., Liu, Y., Lin, Y. T., Liu, Y. C., Guo, K., Li, X. N., … Li, S. H. (2020). Antibacterial harziane diterpenoids from a fungal symbiont Trichoderma atroviride isolated from Colquhounia coccinea var. mollis. Phytochemistry, 170. https://doi.org/10.1016/j.phytochem.2019.112198spa
dcterms.referencesLima. W. G., Spósito. M. B., Amorim. L., Gonçalves. F. P., & de Filho. P. A. M. (2011). Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. European Journal of Plant Pathology. 131(1). 157–165. https://doi.org/10.1007/s10658-011-9795-1spa
dcterms.referencesLiu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.xspa
dcterms.referencesLópez-González, R. C., Gómez-Cornelio, S., De la Rosa-García, S. C., Garrido, E., Oropeza-Mariano, O., Heil, M., & Partida-Martínez, L. P. (2017). The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecology, 26, 1–10. https://doi.org/10.1016/j.funeco.2016.11.004spa
dcterms.referencesMartinez. E., Hio. J., Osorio. J., & Torre. M.F. (2009). Identification of Colletotrichum species causing anthracnose on Tahiti lime, tree tomato and mango. Agronomía Colombiana 27(2). 211-218.spa
dcterms.referencesMartínez-Alcántara, B., & Quiñones, A. (2018). Efecto bioestimulante de diferentes productos en cítricos. Vida rural, (446), 44-49.spa
dcterms.referencesMercier, J & Smilanick, J.L (2005). Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biological control. 32, 3: 401-407. https://doi.org/10.1016/j.biocontrol.2004.12.002spa
dcterms.referencesMikeal L. Roose, Frederick G. Gmitter Jr., Richard Lee, Kim Hummer, Marcos Machado, Sarah Ashmore, & François Luro. (2015). Development of a global conservation strategy for citrus genetic resources. Acta Horticulturae, (1065), 75-83. doi:10.17660/actahortic.2015.1065.7spa
dcterms.referencesMogollón, ÁM., López, C. N., & Orduz, J. O. (2021). Efecto de las variables meteorológicas sobre la antracnosis (Colletotrichum acutatum) de la lima ácida Tahití en el piedemonte llanero, Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 45, 250–259. doi: 10.18257/raccefyn.1237spa
dcterms.referencesMohammadi, P., Tozlu, E., Kotan, R., & Şenol Kotan, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(3), 134–143. https://doi.org/10.17221/55/2016-PPSspa
dcterms.referencesMonteiro, M. C. P., Tavares, D. G., Nery, E. M., de Queiroz, M. V., Pereira, O. L., & Cardoso, P. G. (2020). Enzyme production by Induratia spp. isolated from coffee plants in Brazil. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324- 2020180673spa
dcterms.referencesMoore, G. A. (2001). Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends in Genetics, 17(9), 536–540. doi:10.1016/s0168-9525(01)02442-8spa
dcterms.referencesMousa, W. K., & Raizada, M. N. (2013). The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective. Frontiers in Microbiology, 4. https://doi.org/10.3389/fmicb.2013.00065spa
dcterms.referencesMunir, S., Li, Y., He, P., Huang, M., He, P., He, P., … He, Y. (2020). Core endophyte communities of different citrus varieties from citrus growing regions in China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60350-6spa
dcterms.referencesMurcia, N., Martínez, M. F., Orduz, J. O., Ríos, L., López Galé, Y., Yacomelo Hernández, M. J., Carabalí, A., Kondo, T., García, M. C., Mesa, N. C., López, J., Pérez, L., Rodríguez, D. M., Montes, J. M., Betancourt, M., Rodríguez, I. V., Barreto, J. A., Tarazona, R., Mateus Cagua, D. M., et al. (2020). Modelo productivo de lima ácida Tahití (Citrus × latifoliaTanaka ex Q. Jiménez) para Colombia. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). DOI: https://doi.org/10.21930/agrosavia.model.7403435spa
dcterms.referencesNandy, S., Das, T., Tudu, C. K., Pandey, D. K., Dey, A., & Ray, P. (2020). Fungal endophytes: Futuristic tool in recent research area of phytoremediation. South African Journal of Botany, 134, 285–295. https://doi.org/10.1016/j.sajb.2020.02.015spa
dcterms.referencesNath, A. (2018). Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. Journal of Applied Biology & Biotechnolog. 1(5): 1-5. https://doi.org/10.7324/jabb.2018.60109spa
dcterms.referencesOchoa, G.F., Martínez, E., Ramírez, R, & Correa, G, L. (2012). Crecimiento y desarrollo de la lima ácida (Citrus latifolia tanaka), cv. tahití, en suelos con limitaciones por profundidad efectiva, en un bosque seco tropical. Revista Facultad Nacional de Agronomía - Medellín, 65(2), 6567–6578.spa
dcterms.referencesOrduz, R., Javier Orlando; León, Guillermo A.; Arango W., Laura Victoria. (2009). Lima ácida Tahití: opción agrícola para los Llanos Orientales de Colombia. Corpoica. 2009. 16 p.spa
dcterms.referencesOrtega, H. E., Torres-Mendoza, D., & Cubilla-Rios, L. (2020, August 1). Patents on endophytic fungi for agriculture and bio-and phytoremediation applications. Microorganisms. MDPI AG. https://doi.org/10.3390/microorganisms8081237spa
dcterms.referencesPalou. L., Smilanick. J. L., & Droby. S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Review. https://doi.org/10.2212/spr.2008.2.2spa
dcterms.referencesPekas, A. (2011). Biological pest control in citrus an alternative to chemical pesticides with benefits for essential oil quality. IFEAT International Conference; Barcelona. Spain. pp. 115- 124.spa
dcterms.referencesPena, L.C.; Jung, L.F.; Savi, D.C.; Servienski, A.; Aluizio, R.; Goulin, E.H.; Galli- Terasawa, L.V.; Lameiro de Noronha Sales Maia, B.H.; Annies, V.; Cavichiolo Franco, C.R.; et al. (2017). A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth. J. Plant Diseases and Protection, 124, 349–360.spa
dcterms.referencesPeres, N. A. R., Souza, N. L., Peever, T. L., & Timmer, L. W. (2004). Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease, 88(2), 125–130. https://doi.org/10.1094/PDIS.2004.88.2.125spa
dcterms.referencesPeres, N. A., MacKenzie, S. J., Peever, T. L., & Timmer, L. W. (2008). Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Phytopathology, 98(3), 345–352. https://doi.org/10.1094/PHYTO-98-3-0345spa
dcterms.referencesPeters, L. P., Prado, L. S., Silva, F. I. N., Souza, F. S. C., & Carvalho, C. M. (2020). Selection of endophytes as antagonists of Colletotrichum gloeosporioides in açaí palm. Biological Control, 150. https://doi.org/10.1016/j.biocontrol.2020.104350spa
dcterms.referencesPiccirillo, G., Carrieri, R., Polizzi, G., Azzaro, A., Lahoz, E., Fernández-Ortuño, D., & Vitale, A. (2018). In vitro and in vivo activity of QoI fungicides against Colletotrichum gloeosporioides causing fruit anthracnose in Citrus sinensis. Scientia Horticulturae, 236, 90–95. doi:10.1016/j.scienta.2018.03.044spa
dcterms.referencesPlatania, C., Restuccia, C., Muccilli, S., & Cirvilleri, G. (2012). Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Food Microbiology, 30(1), 219–225. doi:10.1016/j.fm.2011.12.010spa
dcterms.referencesPimenta, R. S., Silva, F. L., Silva, J. F. M., Morais, P. B., Braga, D. T., Rosa, C. A., & Corrêa Jr., A. (2008). Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Brazilian Journal of Microbiology, 39(1), 85–90spa
dcterms.referencesPrabakar, K., Raguchander, T., Parthiban, V. K., Muthulakshmi, P. & Prakasam, V. (2005). Post harvest fungal spoilage in mango at different levels marketing. Madras Agric. J., 92(1-3): 42-48.spa
dcterms.referencesPretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science. 362, 908. https://doi.org/10.1126/science.aav0294spa
dcterms.referencesPrice. C. L., Parker. J. E., Warrilow. A. G., Kelly. D. E., & Kelly. S. L. (2015). Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science. 71(8). 1054–1058. doi:10.1002/ps.4029spa
dcterms.referencesRana, K. L., Kour, D., Sheikh, I., Yadav, N., Yadav, A. N., Kumar, V., … Saxena, A. K. (2019). Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems with Applications to Fuel Cells, 105–144. doi:10.1007/978-3-030-03589-1_6spa
dcterms.referencesRajamanikyam, M., Vadlapudi, V., Amanchy, R., & Upadhyayula, S. M. (2017). Endophytic fungi as novel resources of natural therapeutics. Brazilian Archives of Biology and Technology, 60. https://doi.org/10.1590/1678-4324-2017160542spa
dcterms.referencesRajani, P., Rajasekaran, C., Vasanthakumari, M. M., Olsson, S. B., Ravikanth, G., & Uma Shaanker, R. (2021). Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiological Research, 242. https://doi.org/10.1016/j.micres.2020.126595spa
dcterms.referencesRajput, N., Atiq, M., Tariq, H., Modassar, W., & Hameed, A. (2020). Citrus Gummosis: A Formidable Challenge to Citrus Industry: A Review. International Journal Biosciences,16, 131–144.spa
dcterms.referencesRampersaud, G. C., & Valim, M. F. (2015). 100% citrus juice: Nutritional contribution, dietary benefits, and association with anthropometric measures. Critical Reviews in Food Science and Nutrition, 57(1), 129–140. doi:10.1080/10408398.2013.862611spa
dcterms.referencesRamos, A. P., Talhinhas, P., Sreenivasaprasad, S., & Oliveira, H. (2016). Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 44(4), 549–561. https://doi.org/10.1007/s12600-016-0537-yspa
dcterms.referencesRenaud, M.S.A., Amorim, L., Lourenço, S.A., & Spósito, M.B. (2008). Diagrammatic scale for assessment of Alternaria Brown spot of citrus. Summa Phytopathologica, v.34, n.3, p.270-271.spa
dcterms.referencesRhaiem, A., & Taylor, P. W. J. (2016). Colletotrichum gloeosporioides associated with anthracnose symptoms on citrus, a new report for Tunisia. European Journal of Plant Pathology, 146(1), 219–224. https://doi.org/10.1007/s10658-016-0907-9spa
dcterms.referencesRíos-Rojas, L., Correa, J. F., Rojas-Marín, C. A., & Dorado-Guerra, D. Y. (2018). Edaphoclimatic characterization of the productive zone of Tahiti lime (Citrus latifolia Tanaka) in Tolima (Colombia) affected by a physiopathy. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 569-591. DOI: https://doi.org/10.21930/rcta.vol19_num3_art:862spa
dcterms.referencesRodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles: Tansley review. New Phytologist. 182: 314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.xspa
dcterms.referencesRodríguez, P; Ramírez, M; Bautista, S; Triana, A.C & Rivero, D. (2012). Actividad antifúngica de extractos de Acacia farnesiana sobre el crecimiento in vitro de Fusarium oxysporum f. sp. Lycopersici. Revista Científica UDO Agrícola 12(1): 91-96.spa
dcterms.referencesRojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., and Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144. https://doi.org/10.1016/j.biocontrol.2020.104222spa
dcterms.referencesRuiz A, Parra CC, da Graça JV, Salas B, Malik NSAy Kunta M. 2014. Caracterización molecular y de ensayos de patogenicidad de Colletorichum acutatum, agente causal de la antracnosis del limón en Texas. Revista Mexicana de Fitopatología 32: 52-61.spa
dcterms.referencesSáenz Pérez, C. A., Osorio Hernández, E., Estrada Drouaillet, B., Poot Poot, W. A., Delgado Martínez, R., & Rodríguez Herrera, R. (2019). Principales enfermedades de los cítricos. Revista Mexicana de Ciencias Agrícolas, 10(7), 1653–1665. https://doi.org/10.29312/remexca.v10i7.1827spa
dcterms.referencesSánchez, R., Sánchez, L. B., Sandoval, M.Y., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García, M., & Macías, L. M. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP, 16(2), 132–146. https://doi.org/10.1016/s1405-888x(13)72084-9spa
dcterms.referencesSantos, P. J. C. D., Savi, D. C., Gomes, R. R., Goulin, E. H., Da Costa Senkiv, C., Tanaka, F. A. O., … Glienke, C. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186–187, 153– 160. https://doi.org/10.1016/j.micres.2016.04.002spa
dcterms.referencesSaunders, M., Glenn, A. E., & Kohn, L. M. (2010). Exploring the evolutionary ecology of fungal endophytes in agricultural systems: Using functional traits to reveal mechanisms in community processes. Evolutionary Applications, 3(5–6), 525–537. https://doi.org/10.1111/j.1752-4571.2010.00141.xspa
dcterms.referencesSegaran. G., & Sathiavelu. M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.bcab.2019.101284spa
dcterms.referencesSelim KA, El-Beih AA, AbdEl-Rahman TM, El-Diwany AI. (2012). Biology of Endophytic Fungi. Current Research in Environmental & Applied Mycology 2(1), 31–82, Doi 10.5943/cream/2/1/3spa
dcterms.referencesSerrano, R., González-Menéndez, V., Rodríguez, L., Martín, J., Tormo, J. R., and Genilloud, O. (2017). Co-culturing of fungal strains against Botrytis cinerea as a model for the induction of chemical diversity and therapeutic agents. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00649spa
dcterms.referencesShin, Y. H., Ko, E. J., Kim, S. J., Hyun, H. N., & Jeun, Y. C. (2019). Suppression of melanose caused by Diaporthe citri on citrus leaves pretreated with bio-sulfur. Plant Pathology Journal, 35(5), 417–424. https://doi.org/10.5423/PPJ.OA.03.2019.0067spa
dcterms.referencesShi, X. C., Wang, S. Y., Duan, X. C., Wang, Y. Z., Liu, F. Q., & Laborda, P. (2021). Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop Protection. Elsevier Ltd. https://doi.org/10.1016/j.cropro.2020.105454spa
dcterms.referencesShivakumar, K., Palaiah, P., Sunnkad, G., Mallesh, S., & Pampanna, Y. (2016). Pathogenicity of different isolates of anthracnose of mango caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Journal of FARM SCIENCES, 28(4).spa
dcterms.referencesSilva-Junior, G. J., Spósito, M. B., Marin, D. R., Ribeiro-Junior, P. J., & Amorim, L. (2014). Spatiotemporal characterization of citrus postbloom fruit drop in Brazil and its relationship to pathogen dispersal. Plant Pathology, 63(3), 519–529. https://doi.org/10.1111/ppa.12138spa
dcterms.referencesSuwannarach, N., Kumla, J., Bussaban, B., Nuangmek, W., Matsui, K., & Lumyong, S. (2013). Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection, 45, 63–70. https://doi.org/10.1016/j.cropro.2012.11.015spa
dcterms.referencesTabti, L., El Amine Dib, M., Djabou, N., Benyelles, N. G., Paolini, J., Costa, J., & Muselli, A. (2014). Control of fungal pathogens of citrus sinensis L. by essential oil and hydrosol of Thymus capitatus L. Journal of Applied Botany and Food Quality, 87, 279–285. https://doi.org/10.5073/JABFQ.2014.087.039spa
dcterms.referencesTalibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology. 117, 1- 17. https://doi.org/10.1111/jam.12495spa
dcterms.referencesTennant. P. F., Robinson. D., Fisher. L., Bennett. S.-M., Hutton. D., Coates-Beckford. P., & Mc Laughlin. W. (2009). Diseases and Pests of Citrus (Citrus spp.). Tree and Forestry Science and Biotechnology. 3. 81–107.spa
dcterms.referencesTibpromma, S., Hyde, K. D., Bhat, J. D., Mortimer, P. E., Xu, J., Promputtha, I., & Karunarathna, S. C. (2018). Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys, 33, 25–67. https://doi.org/10.3897/mycokeys.33.23670spa
dcterms.referencesTimmer L.W., Mondal. S.N., Peres, N. & Bhatia, A. (2004). Fungal Diseases of fruit and foliage of Citrus tres. In. Naqvi S.A (eds). Diseases of fruits and vegetables, Volume I. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2606-4_3.spa
dcterms.referencesTriaca, T., Cavião, H,C., Pansera, M.R., Venturin, L., & Sartori, V.C. (2018). Detection of antifungal activity of plant extracts on Alternaria citrus. Summa Phytopathologica, 44 (2): 185- 188.spa
dcterms.referencesTrujillo, N.E. (2010). Biocontrol de hongos fitopatógenos en cítricos. CienciaUAT, 4(3),20-23. https://www.redalyc.org/articulo.oa?id=441942919007spa
dcterms.referencesTurner, T., & Burri, B. J. (2013). Potential nutritional benefits of current citrus consumption. Agriculture (Switzerland), 3(1), 170–187. https://doi.org/10.3390/agriculture3010170spa
dcterms.referencesVargas, W., Sanz, J.M., Rech, G.E., Rivera, P., Benito, E., Díaz, J.M., Thon, M. R. and Sukno, S. (2012). Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize. Plant Physiology. 158 (3), 1342-1358. DOI: https://doi.org/10.1104/pp.111.190397spa
dcterms.referencesVillavicencio-Vásquez, M., Espinoza-Lozano, R. F., Pérez-Martínez, S., & Sosa Del Castillo, D. (2018). Foliar endophyte fungi as candidate for biocontrol against moniliophthora spp. of theobroma cacao (malvaceae) in Ecuador. Acta Biologica Colombiana, 23(3), 235–241. https://doi.org/10.15446/abc.v23n3.69455spa
dcterms.referencesWang. Z., Jiang. M., Chen. K., Wang. K., Du. M., Zalán. Z., & Kan. J. (2018). Biocontrol of Penicillium digitatum on Postharvest Citrus Fruits by Pseudomonas fluorescens. Journal of Food Quality. 2018. https://doi.org/10.1155/2018/2910481spa
dcterms.referencesWang. Z., Sui. Y., Li. J., Tian. X., & Wang. Q. (2020). Biological control of postharvest fungal decays in citrus: a review. Critical Reviews in Food Science and Nutrition. Bellwether Publishing. Ltd. https://doi.org/10.1080/10408398.2020.1829542spa
dcterms.referencesWang, W., de Silva, D. D., Moslemi, A., Edwards, J., Ades, P. K., Crous, P. W., et al. (2021). Colletotrichum species causing anthracnose of citrus in australia. J. Fungi 7, 1–24. doi: 10.3390/jof7010047spa
dcterms.referencesWharton, P., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales Del Jardín Botánico de Madrid, 61(1), 3–22. https://doi.org/10.3989/ajbm.2004.v61.i1.61spa
dcterms.referencesYadav, A, N. (2018). Biodiversity and Biotechnological Applications of Host-Specific Endophytic Fungi for Sustainable Agriculture and Allied Sectors. Acta Scientific Microbiology 1.5 (2018) 01-05spa
dcterms.referencesYan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology. Springer Verlag. https://doi.org/10.1007/s00253-019-09713-2spa
dcterms.referencesYoon. M. Y., Cha. B., & Kim. J. C. (2013). Recent trends in studies on botanical fungicides in agriculture. The plant pathology journal. 29(1). 1–9. https://doi.org/10.5423/PPJ.RW.05.2012.0072spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_71e4c1898caa6e32spa
Archivos
Paquete original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Hongos_Endófitos_de_Lima_Tahití_(Citrus_citrus_x_latifolia)_y_su_Utilidad_en_el_Biocontrol (1).pdf
Tamaño:
2.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento Principal
Paquete de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
59 B
Formato:
Item-specific license agreed upon to submission
Descripción: