AGBGA. Artículos de Investigación
URI permanente para esta colección
Navegar
Examinando AGBGA. Artículos de Investigación por Autor "Bianchi, Anna M."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de clasificación
- PublicaciónAcceso abiertoBrain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea(2016-02) García, Ronald G.; Kim, Jieun; Sheehan, James D.; Beissner, Florian; Bianchi, Anna M.; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly; Sclocco, RobertaWhile autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects’ ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anticorrelated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target.
- PublicaciónAcceso abiertoNeuroimaging brainstem circuitry supporting cardiovagal response to pain : A combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study(2016-01) García, Ronald G.; Sclocco, Roberta; Beissner, Florian; Desbordes, Gaelle; Polimeni, Jonathan R.; Wald, Lawrence L.; Kettner, Norman W.; Kim, Jieun; Renvall, Ville; Bianchi, Anna M.; Cerutti, Sergio; Napadow, Vitaly; Barbieri, RiccardoCentral autonomic control nuclei in the brainstem have been difficult to evaluate non-invasively in humans. We applied ultrahigh-field (7 T) functional magnetic resonance imaging (fMRI), and the improved spatial resolution it affords (1.2 mm isotropic), to evaluate putative brainstem nuclei that control and/or sense pain-evoked cardiovagal modulation (high-frequency heart rate variability (HF-HRV) instantaneously estimated through a point-process approach). The time-variant HF-HRV signal was used to guide the general linear model analysis of neuroimaging data. Sustained (6 min) pain stimulation reduced cardiovagal modulation, with the most prominent reduction evident in the first 2 min. Brainstem nuclei associated with pain-evoked HF-HRV reduction were previously implicated in both autonomic regulation and pain processing. Specifically, clusters consistent with the rostral ventromedial medulla, ventral nucleus reticularis (Rt)/nucleus ambiguus (NAmb) and pontine nuclei (Pn) were found when contrasting sustained pain versus rest. Analysis of the initial 2-min period identified Rt/NAmb and Pn, in addition to clusters consistent with the dorsal motor nucleus of the vagus/nucleus of the solitary tract and locus coeruleus. Combining high spatial resolution fMRI and high temporal resolution HF-HRV allowed for a non-invasive characterization of brainstem nuclei, suggesting that nociceptive afference induces pain-processing brainstem nuclei to function in concert with known premotor autonomic nuclei in order to affect the cardiovagal response to pain.