Publicación:
Caracterización de la Microbiocenosis Asociada al Deterioro en Edificaciones Antiguas y Posibles Bienes de Interés Cultural en el área Metropolitana de Bucaramanga: una Aproximación Metagenómica

dc.contributor.advisorRueda-Forero, Nohora Juliana
dc.contributor.advisorHerrera-Pineda, Diego Fernando
dc.contributor.authorGarcés-Manosalva, Rubén Darío
dc.contributor.juryValdivieso-Quintero, Wilfredo
dc.contributor.juryMantilla-Paredes, Andrea Juliana
dc.date.accessioned2023-09-26T15:32:26Z
dc.date.available2023-09-26T15:32:26Z
dc.date.issued2023-07-07
dc.descriptionDigitalspa
dc.description.abstractEl presente Trabajo de Grado tuvo como objetivo principal caracterizar la microbiocenosis asociada al biodeterioro en edificaciones antiguas y posibles bienes de interés cultural en el área metropolitana de Bucaramanga. Para llevar a cabo este análisis microbiológico, se utilizó el Laboratorio de Biología Molecular y Biotecnología de la Universidad de Santander UDES. El muestreo se realizó en la Casa de la Cultura Piedra del Sol, ubicada en Floridablanca, Santander. Se empleó la plataforma MG-RAST para lograr una identificación precisa de los microorganismos hasta nivel de género. Esta identificación se basó en el uso de metadatos detallados que proporcionaban información esencial sobre la muestra analizada, los objetivos del estudio, el lugar exacto de recolección, el tipo de librería utilizada y los genes y regiones secuenciadas. Los análisis se llevaron a cabo mediante el uso de algoritmos basados en similaridad, lo que permitió realizar asignaciones taxonómicas precisas. La concentración de ADN obtenida en el análisis fue de 500 ng/µL. En términos generales, se puede concluir que el biodeterioro que afecta los materiales que forman parte del ecosistema de un bien cultural se define como el proceso en el cual las actividades vitales de los organismos resultan en cambios indeseables en las propiedades de dicho material. Gran parte de la microbiocenosis descrita en este estudio son conocidos por su capacidad de deteriorar diversos materiales entre ellos el concreto. Es importante destacar que en esta investigación se obtuvieron datos veraces y precisos, lo que indica que el proceso de secuenciación se llevó a cabo de manera satisfactoria.spa
dc.description.abstractThe main objective of this graduate work was to characterize the microbiocenosis associated with biodeterioration in old buildings and possible assets of cultural interest in the metropolitan area of Bucaramanga. To carry out this microbiological analysis, the Laboratory of Molecular Biology and Biotechnology of the Universidad de Santander UDES. Sampling was performed at the Casa de la Cultura Piedra del Sol, located in Floridablanca, Santander. The MG-RAST platform was used to achieve an accurate identification of microorganisms down to the genus level. This identification was based on the use of detailed metadata that provided essential information about the sample analyzed, the objectives of the study, the exact place of collection, the type of library used, and the genes and regions sequenced. Analyses were carried out using similarity-based algorithms, which allowed precise taxonomic assignments to be made. The DNA concentration obtained in the analysis was 500 ng/µL. In general terms, it can be concluded that biodeterioration affecting materials that are part of the ecosystem of a cultural property is defined as the process in which the vital activities of organisms result in undesirable changes in the properties of such material. Most of the microbiocenoses described in this study are known for their ability to deteriorate various materials, including concrete. It is important to emphasize that in this research accurate and precise data were obtained, which indicates that the sequencing process was carried out satisfactorily.eng
dc.description.degreelevelPregrado
dc.description.degreenameMicrobiólogo Industrial
dc.description.tableofcontentsResumen 15 Abstract 17 Introducción 19 Marco Teórico 22 Materiales y Propiedades del Concreto en la Construcción 23 El Concreto 23 Aspectos Físicos del Concreto 23 Aspectos Químicos del Concreto 24 Factores Asociados al Deterioro y Biodeterioro del Concreto 25 Factores Abióticos 25 Factores Bióticos 26 Microbiocenosis del Concreto 26 Secuenciación de Nueva Generación 32 Secuenciación de próxima generación en el Biodeterioro 33 Illumina 33 MiSeq o HiSeq 37 Primers Empleados en la Secuenciación 39 Coeficiente de Calidad 39 Análisis Bioinformático de Secuencias 40 MG-RAST Herramienta Bioinformática 41 Estado del Arte 44 Marco Legal 50 Planteamiento del Problema 52 Justificación 56 Pregunta de investigación 58 Hipótesis 59 Objetivos 60 Objetivo General 60 Objetivo Específicos 60 Metodología 61 Lugar de Muestreo 61 Extracción y Purificación de ADN Metagenómico 62 Control de Calidad del ADN 62 Librería – Metagenómica 63 Secuenciación por Plataforma Illumina 64 Análisis de la Librería Illumina 64 Resultados 65 Extracción y Cuantificación de ADN Metagenómico 65 Análisis Bioinformático de Lecturas 65 Porcentaje de Calidad 65 Gen 16S 66 Clasificación por Dominios 66 Clasificación por Filo 66 Clasificación por Género 67 Mapa de calor 69 Diversidad Alfa α 72 Gen 18S 72 Clasificación por Dominios 72 Clasificación por Filo 72 Clasificación por Género 74 Mapa de Calor 75 Diversidad Alfa α 76 Gen ITS 76 Clasificación por Dominios 76 Clasificación por Filo 77 Mapa de Calor 79 Diversidad Alfa α 80 Discusión 81 Extracción de ADN 82 Análisis Bioinformático de Secuencias 83 Gen 16S 84 Clasificación por Dominio 84 Clasificación por Filo 86 Clasificación por Género 89 Diversidad Alfa 91 Gen 18S 92 Clasificación por Dominio 92 Clasificación por Filo 93 Clasificación por Género 96 Diversidad Alfa 98 Gen ITS 98 Clasificación por Dominios 98 Clasificación por Filo 99 Clasificación por Género 100 Diversidad Alfa 102 Conclusiones 103 Recomendaciones 105 Referencias Bibliográficas 106spa
dc.format.extent127 p
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Santander
dc.identifier.localT 33.23 G171c
dc.identifier.reponameRepositorio Digital Universidad de Santander
dc.identifier.repourlhttps://repositorio.udes.edu.co
dc.identifier.urihttps://repositorio.udes.edu.co/handle/001/9292
dc.language.isospa
dc.publisherUniversidad de Santander
dc.publisher.branchBucaramanga
dc.publisher.facultyFacultad de Ciencias Naturales
dc.publisher.placeBucaramanga, Colombia
dc.publisher.programMicrobiología Industrial
dc.relation.referencesAbalea, V., Cillard, J., Dubos, M.-P., Anger, J.-P., Cillard, P., & Morel, I. (1998). Iron-induced oxidative DNA damage and its repair in primary rat hepatocyte culture. Carcinogenesis, 19(6), 1053-1059.
dc.relation.referencesAlam, Md & Ahmad, Syed Ishtiaq. (2020). Concrete and It’s properties. 10.13140/RG.2.2.18980.50564. Presentation ON Concrete and It’s properties
dc.relation.referencesAlam, Md., & Ahmad, S. I. (2020). Concrete and its properties. doi: 10.13140/RG.2.2.18980.50564.
dc.relation.referencesAnnila, P.J., Lahdensivu, J., Suonketo, J., (2018). Need to repair moisture- and mould damage in different structures in Finnish public buildings. J. Build. Eng. 16, 72–78. https://doi. org/10.1016/j.jobe.2017.12.010.
dc.relation.referencesArezoumandi, M., & Volz, J. S. (2013). Effect of high-volume fly ash on shear strength of concrete beams. Journal of Cleaner Production, 59, 120-130.
dc.relation.referencesAscaso, C., Wierzchos, J., Souza-Egipsy, V., de los Rı́os, A., & Delgado Rodrigues, J. (2002). In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). International Biodeterioration & Biodegradation.
dc.relation.referencesBalasubramanian, B., & Klenerman, D. (1998). A new method of sequencing DNA. Analytical Biochemistry, 72-76.
dc.relation.referencesBarnes, R. D. (2022). artrópodo. Enciclopedia Británica. https://www.britannica.com/animal/arthropod
dc.relation.referencesBau T, Yan J-Q (2021). A new genus and four new species in the /Psathyrella s.l. clade from China. MycoKeys 80: 115–131. https://doi.org/10.3897/mycokeys.80.65123.
dc.relation.referencesBegerow, D., Nilsson, H., Unterseher, M., & Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99-108. doi: 10.1007/s00253-010-2585-4.
dc.relation.referencesBernardet, JF., Nakagawa, Y. (2006). An Introduction to the Family Flavobacteriaceae. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30747-8_16
dc.relation.referencesBertron, A., Escadeillas, G., & Duchesne, J. (2004). Cement paste alteration by liquid manure organic acids: Chemical and mineralogical characterization. Cement and Concrete Research, 34(10), 1823-1835.
dc.relation.referencesBlackburn, T., Gaston, K. (2003). Macroecology: concepts and consequences. Blackwell Science, Oxford. Ed: 3
dc.relation.referencesBomar, L., Maltz, M., Colston, S., Graf, J. (2011). Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–11
dc.relation.referencesBowers, K., Mesbah, N., Wiegel, J. (2009). Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physic-chemical boundary for life. Saline Syst. 5, 9.
dc.relation.referencesBravo Granados, (2021). Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander [Tesis de pregrado, Universidad de Santander, Facultad de Ciencias Exactas, Naturales y Agropecuarias, Microbiología Industrial]. Bucaramanga.
dc.relation.referencesBrooksbank, C., Bergman, M., Apweiler, R. (2014). The European Bioinformatics Institute’s data resources 2014. Nucleic Acids Res 42 (Database issue):D18–D25
dc.relation.referencesBürgmann, H., Pesaro, M., Widmer, F., Zeyer, J. (2001). A strategy for optimizing quality and quantity of DNA extracted from soil, J. Microbiol. Methods 45 (1) 7–20.
dc.relation.referencesCamacho, E., & Niño-Vega, G.A. (2017). Paracoccidioides spp.: Factores de virulencia y estrategias de inmunoevasión. Mediadores de la inflamación.
dc.relation.referencesCaneva, G., Bartoli, F., Savo, V., Futagami, Y., & Strona, G. (2016). Combining statistical tools and ecological assessments in the study of biodeterioration patterns of stone temples in Angkor (Cambodia). Scientific Reports, 6, 32601
dc.relation.referencesCaporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6(8), 1621-1624
dc.relation.referencesCaporaso, J., Kuczynski, J., Stombaugh, J. (2010). QIIME allows analysis of highthroughput community sequencing data. Nat Methods 7:335–336
dc.relation.referencesCastillo, E. (2013). Aplicación de un diseño de Plackett y Burman en la obtención de lípidos transesterificables para su potencial transformación en biodiesel a partir de la microalga Scenedesmus incrassatulus (Chlorophyceae).
dc.relation.referencesCastrillón, J. C., & Orozco, L. P. (2013). Acanthamoeba spp. como parásitos patógenos y oportunistas.
dc.relation.referencesCelik, Kemal; Meral, Cagla; Mancio, Mauricio; Mehta, P.; Monteiro, Paulo (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials. 67, 14-19. https://doi.org/10.1016/j.conbuildmat.2013.11.064
dc.relation.referencesCoutinho SJ. (2003). The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement and Concrete Composites 2003: 25(1):51–59
dc.relation.referencesCox, M., Peterson, D., Biggs, P. (2010). Solexaqa: at-a-glance quality assessment of illumina second-generation sequencing data. BMC Bioinformatics 11:485
dc.relation.referencesCrispim, C. A., Gaylarde, P. M., Gaylarde, C. C., & Neilan, B. A. (2006). Deteriogenic cyanobacteria on historic buildings in Brazil detected by culture and molecular techniques. International Biodeterioration & Biodegradation, 57(4), 239-243.
dc.relation.referencesCutler, N. & Viles, H. (2010). Eukaryotic microorganisms and stone biodeterioration. Geomicrobiology Journal, 27(7), 630-646.
dc.relation.referencesCwalina, B. (2008). Biodeterioration of concrete. Archit. Civ. Eng. Environ., 4, 133-140.
dc.relation.referencesCwalina, B. (2014). Understanding Biocorrosion. En T. Liengen, D. Feron, R. Basseguy y I. B. Beech (Eds.), pp. 281-312. Elsevier.
dc.relation.referencesDakal, T. C., & Arora, P. K. (2012). Evaluation of potential of molecular and physical techniques in studying biodeterioration. Reviews in Environmental Science and Biotechnology, 11, 71-104. https://doi.org/10.1007/s11157-012-9264-0
dc.relation.referencesDíaz, R., Saparrat, M. C. N., Jurado, M., Martínez, A. T., & Martínez, M. J. (2010). Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production. Applied Microbiology and Biotechnology, 88(1), 133-142. https://doi.org/10.1007/s00253-010-2723-z.
dc.relation.referencesDuan Y, Wu F, Wang W, He D, Gu JD, et al. (2017). The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLOS ONE 12(7): e0179718. https://doi.org/10.1371/journal.pone.0179718
dc.relation.referencesEdgar RC (2010). Search and clustering orders of magnitude faster than blast. Bioinformatics 26:2460–2461
dc.relation.referencesEhrlich, H. L. & Newman, D. K. (2009). Geomicrobiology 5th edn. CRC Press.
dc.relation.referencesEhrlich, H. L. (1999). Los microbios como agentes geológicos: Their role in mineral formation. Geomicrobiol J, 16(2), 135-153.
dc.relation.referencesEichorst, S. A., Trojan, D., Roux, S., Herbold, C., Rattei, T., and Woebken, D. (2018). Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 20, 1041–1063. doi: 10.1111/1462-2920.14043
dc.relation.referencesEl-Bestawy., Ebtesam ., Abd El-Salam, A. Z., & Mansy, A. E. H. (2007). Potential use of environmental cyanobacterial species in bioremediation of Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing ndane-contaminated effluents. International Biodeterioration & Biodegradation, 59(3), 180–192. doi:10.1016/j.ibiod.2006.12.005.
dc.relation.referencesElyamany, Hafez; Elmoaty, Abd; Mohamed, Basma (2014). Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete. Alexandria Engineering Journal, 53(2), 295-307.
dc.relation.referencesFallows J. (2014). When will genomics cure cancer. The Atlantic. (www.theatlantic.com/magazine/archive/2014/01/when-will-genomics-curecancer/355739/)
dc.relation.referencesFelske, A., Heyrman, J., Balcaen, A., De Vos, P. (2003). Multiplex PCR screening of soil
dc.relation.referencesFuerst, J.A. and Sagulenko, E. (2011). Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol. 9, 403–413. doi:10.1038/nrmicro2578
dc.relation.referencesFujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T. (2010). Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nature Genetics. 42:931–936
dc.relation.referencesGabor, E., de Vries, E., Janssen, D. (2003). Efficient recovery of environmental DNA
dc.relation.referencesGadd, G. M. (2017). Geomicrobiology of the built environment. Nat. Microbiol. 2, 16275
dc.relation.referencesGeorge, R. P., Ramya, S., Ramachandran, D., & Kamachi Mudali, U. (2013). Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. Cement and Concrete Research, 47, 8-13. https://doi.org/10.1016/j.cemconres.2013.01.010
dc.relation.referencesGolewski, G. L. (2019). Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures. Materials Design and Processing Communications, 1, e82. https://doi.org/10.1002/mdp2.82.
dc.relation.referencesGomez-Alvarez, V., Teal, T., Schmidt, T. (2009). Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317
dc.relation.referencesGonzalez-Pimentel, J.L., Miller, A.Z., Jurado, V., Laiz, L., Pereira, M.F.C., & Saiz-Jimenez, C. (2018). Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria.
dc.relation.referencesGorbushina, A. A. & Broughton, W. J. (2009). Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annual Review of Microbiology, 63, 431–450
dc.relation.referencesGoujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. 2010. Nucleic acids research, 38 Suppl: W695-9.
dc.relation.referencesGutarowska, B., Celikkol-Aydin, S., Bonifay, V., Otlewska, A., Aydin, E., Oldham, A. L., et al. (2015). Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings. Frontiers in Microbiology, 6, 979.
dc.relation.referencesHadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, et al. (2014). Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers. PLOS ONE 9(2): e87624. https://doi.org/10.1371/journal.pone.0087624
dc.relation.referencesHalbwachs, H., Harper, C. J., & Krings, M. (2021). Fossil Ascomycota and Basidiomycota, With Notes on Fossil Lichens and Nematophytes. En Ó. Zaragoza & A. Casadevall (Eds.), Encyclopedia of Mycology (pp. 378-395). Elsevier. ISBN 9780323851800.
dc.relation.referencesHartmann, M., Lee, S., Hallam, S.J., Mohn, W.W., (2009). Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ. Microbiol. 11 (12), 3045–3062.
dc.relation.referencesHe, M.-Q., & Zhao, R.-L. (2021). Outline of Basidiomycota. In O. Zaragoza & A. Casadevall (Eds.), Encyclopedia of Mycology (pp. 310-319). Elsevier. https://doi.org/10.1016/B978-0-12-819990-9.00065-2.
dc.relation.referencesHolzinger, A.; C. Lütz & U. Karsten. (2011). Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J. Phycol. 47:591-602.
dc.relation.referencesHoppert, M., Flies, C., Pohl, W., Gunzl, B., & Schneider, J. (2004). Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environmental Geology, 46(3-4), 421-428.
dc.relation.referencesHou SB Makarova KS Saw JHW et al. (2008). Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct3: 26.
dc.relation.referencesHsieh, P., Pedersen, J. Z., & Bruno, L. (2014). Photoinhibition of Cyanobacteria and its Application in Cultural Heritage Conservation. Photochemistry and Photobiology, 90(3), 533-543. doi: 10.1111/php.12208 PMID: 24320697
dc.relation.referencesHugerth LW, Muller EEL, Hu YOO, Lebrun LAM, Roume H, et al. (2014). Diseño sistemático de cebadores del gen 18S rRNA para determinar la diversidad eucariota en consorcios microbianos. PLOS ONE 9(4): e95567. https://doi.org/10.1371/journal.pone.0095567
dc.relation.referencesHung, J., Weng, Z. (2016). Sequence Alignment and Homology Search. Cold Spring Harb Protoc. (11) doi:10.1101/pdb.top093070
dc.relation.referencesHurt, M., Apte, S., Leher, H., Howard, K., Nierderkorn, J., and Alizadeh, H. (2001). Exacerbation of Acanthamoeba Keratitis in Animal Treated with Anti- microphage Inflammatory Protein 2 or Antineutrophil Antibodies. Infection and Immunity. 60: 2988-2995.
dc.relation.referencesHuseyin, C. E., O'Toole, P. W., Cotter, P. D., & Scanlan, P. D. (2017). Forgotten Fungi- the Gut Mycobiome in Human Health and Disease. FEMS Microbiology Reviews, 41, 479-511. doi: 10.1093/femsre/fuw047.
dc.relation.referencesHussain S, Usman M, Afshan N, Ahmad H, Khan J, Khalid AN (2018). The genus Coprinellus (Basidiomycota; Agaricales) in Pakistan with the description of four new species. Mycokeys 39:41–61. https://doi.org/10.3897/mycokeys.39.267434.
dc.relation.referencesHyvarinen, A., Meklin, T., Vepsalainen, A., Nevalainen, A., (2002). Fungi and actinobacteria in moisture-damaged building materials d concentrations and diversity. Int. Biodeterior. Biodegr. 49, 27–37. https://doi.org/10.1016/S0964-8305(01)00103-2
dc.relation.referencesIbarra-Trujillo, E. J., & García-Alzate, C. A. (2017). Ecología trófica y reproductiva de Hemibrycon sierraensis (Characiformes: Characidae), pez endémico del río Gaira, Sierra Nevada de Santa Marta, Colombia. Revista de Biología Tropical, 65(3), 1033-1045. https://doi.org/10.15517/rbt.v65i3.29439
dc.relation.referencesImhoff, J.F. and A. Hiraishi. (2005). Aerobic bacteria containing bacteriochlorophyll and belonging to the Alphaproteobacteria. In: D.J. Brenner, N.R. Krieg, J.T. Staley and G.M. Garrity (eds.), Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2 (Part A), Springer, New York. pp. 145-148.
dc.relation.referencesJanssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728. doi: 10.1128/aem.72.3.1719-1728.2006
dc.relation.referencesJayakumar, S., & Saravanane, R. (2010). Biodeterioration of coastal concrete structures by macroalgae - Chaetomorpha antennina. Materials Research, 13(4), 513-518. https://doi.org/10.1590/S1516-14392009000400015
dc.relation.referencesJena, R., Aqel, M., Srivastava, P., Mahanti, P. (2009). Soft computing methodologies in bioinformatics. European Journal of Scientific Research, 26(2), 189-203.
dc.relation.referencesJia, X., Han, S., Zhao, Y., Zhou, Y. (2006). Comparisons of extraction and purification
dc.relation.referencesJiang, L., Pettitt, T. R., Buenfeld, N., & Smith, S. R. (2022). A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Building and Environment, 214, 108925. https://doi.org/10.1016/j.buildenv.2021.108925.
dc.relation.referencesJoey B. Tanney, Brian Douglas, and Keith A. Seifert (2016). Sexual and asexual states of some endophytic species of Spruce Philocephala, Mycologia, 108:2, 255-280, DOI: 10.3852/15-136.
dc.relation.referencesJones, EB Gareth; Suetrong, Satinee; Sakayaroj, Jariya; Bahkali, Ali H.; Abdel-Wahab, Mohamed A.; Boekhout, Teun; Pang, Ka-Lai (2015). "Clasificación de Ascomycota, Basidiomycota, Blastocladiomycota y Chytridiomycota marinos". Diversidad de hongos . 73 (1): 1–72. doi : 10.1007/s13225-015-0339-4 . S2CID 38469033
dc.relation.referencesKamalakaran, S., Varadan, A., Janevski, N., Banerjee, N. (2013). Translating next generation sequencing to practice: Opportunities and necessary steps. Molecular Oncology 7(4):743-755
dc.relation.referencesKeegan, K., Trimble, W., Wilkening, J. (2012). A platform-independent method for detecting errors in metagenomic sequencing data, Drisee. PLoS Comput Biol 8:e1002541
dc.relation.referencesKeshari, N., & Adhikary, S. P. (2014). Diversidad de cianobacterias en monumentos de piedra y fachadas de edificios de la India y su análisis filogenético. International Biodeterioration & Biodegradation, 90, 45-51.
dc.relation.referencesKircher, M., Sawyer, S., Meyer, M. (2012). Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic AcidsRes. 2513–2524.
dc.relation.referencesKoboldt, D., Steinberg, K., Larson, D., Wilson, R. (2013). The next-generation sequencing revolution and its impact on genomics. Cell 155(1):27-38
dc.relation.referencesKoleff, P., Gaston, K., Lennon, J. (2003). Measuring beta diversity for presence– absence data. Journal of Animal Ecology, 72(3), 367-382.
dc.relation.referencesKoonin, E. V. (2005). Orthologs, Paralogs, and Evolutionary Genomics. Annual Review of Genetics, 39(1), 309–338. doi:10.1146/annurev.genet.39.073003.114725 10.1146/annurev.genet.39.073003.114725
dc.relation.referencesKrakova, L., Chovanova, K., Selim, S. A., Simonovicova, A., Puskarova, A., Makova, A. (2012). A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. International Biodeterioration & Biodegradation, 70, 117-125.
dc.relation.referencesKües, U. (2015). Fungal enzymes for environmental management. Current Opinion in Biotechnology, 33, 268-278. https://doi.org/10.1016/j.copbio.2015.03.006.
dc.relation.referencesKurakov, A. V., Lavrent'ev, R. B., Nechitailo, T. Y., et al. (2008). Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology, 77, 90-98. https://doi.org/10.1134/S002626170801013.
dc.relation.referencesLangmead, B., Trapnell, C., Pop, M. (2009). Ultrafast and memory-effi cient alignment of short DNA sequences to the human genome. Genome Biol 10:R25
dc.relation.referencesLevinskaite, L., Paskevicius, A., (2013). Fungi in water-damaged buildings of Vilnius Old City and their susceptibility towards disinfectants and essential oils. Indoor Built Environ 22 (5), 766–775. https://doi.org/10.1177/1420326X12458514
dc.relation.referencesLi Q, Zhang B, He Z, Yang X (2016). Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing. PLoS ONE 11(9): e0163287. doi:10.1371/journal.pone.0163287
dc.relation.referencesLi, Z., Liu, L., Chen, J. & Chen, H. H. (2016). Cellular dissolution at hypha- and sporemineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology. https://dx.doi.org/10.1130/G37561.1
dc.relation.referencesLisci, M., Monte, M., & Pacini, E. (2003). Lichens and higher plants on stone: a review. International Biodeterioration & Biodegradation, 51(1), 1-17.
dc.relation.referencesLiu, R., Durham, S. A., Rens, K. L., & Ramaswami, A. (2012). Optimization of cementitious material content for sustainable concrete mixtures. Journal of Materials in Civil Engineering, 24, 745-753.
dc.relation.referencesMaclaurin, J., Sterelny, K. (2008). What is biodiversity? The University of Chicago Press, Chicago. 224 p.
dc.relation.referencesMeneses, C., Rozo, L., Franco, J. (2011). Tecnologías bioinformáticas para el análisis de secuencias de ADN. Scientia et Technica Año XVI, No 49:116-121. Universidad Tecnológica de Pereira. ISSN 0122-1701.
dc.relation.referencesMethé, B., Nelson, K., Pop, M., Creasy, H., Giglio, M., Huttenhower, C., Gevers, D., Petrosino, J., Abubucker, S., Badger, J. (2012). A framework for human microbiome research. Nature 486:215-221.
dc.relation.referencesMeyer, F., Paarmann, D., D’Souza, M. (2008). The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386
dc.relation.referencesMiller, A. Z., et al. (2014). Siliceous speleothems and associated microbe-mineral interactions from Ana Heva lava tube in Easter Island (Chile). Geomicrobiology Journal, 31, 236-245.
dc.relation.referencesMiller, A. Z., Green, T. R. G., & Cuthbert, M. O. (2012). Bioreceptivity of building stones: A review. Science of the Total Environment, 426, 1-12
dc.relation.referencesMoney, N. P. (2016). Fungal Diversity. In S. C. Watkinson, L. Boddy, & N. P. Money (Eds.), The Fungi (Third Edition) (pp. 1-36). Academic Press.
dc.relation.referencesMorgan, J., Carr, I., Sheridan, E., Chu, C., Hayward, B. (2010). Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat. 31(4):484–91.
dc.relation.referencesMumy, K., Findlay, R. (2004). Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J Microbiol Methods 57, 259–268.
dc.relation.referencesMushinski, R. M., Zhou, Y., Gentry, T. J. y Boutton, T. W. (2018). El perfil metataxonómico bacteriano y el comportamiento funcional putativo asociado con los procesos del ciclo C y N permanecen alterados durante décadas después de la cosecha forestal. Biol. Bioquímica del suelo. 119, 184–193. doi: 10.1016/j.soilbio.2018.01.008
dc.relation.referencesNagy LG, Házi J, Vágvölgyi C, Papp T (2012). Phylogeny and species delimitation in the genus Coprinellus with special emphasis on the haired species. Mycologia 104(1):254-275. https:// doi.org/10.3852/11-149
dc.relation.referencesNakazato, T., Ohta, T., Bono, H. (2013). Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive. PLoS One. 8(10):e77910.
dc.relation.referencesNilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo, L. (2019). Mycobiome Diversity: High-Throughput Sequencing and Identification of Fungi. Nature Reviews Microbiology, 17, 95-109. doi: 10.1038/s41579-018-0116-y
dc.relation.referencesNoeiaghaei, T., Mukherjee, A., Dhami, N., & Chae, S.-R. (2017). Biogenic deterioration of concrete and its mitigation technologies. Construction and Building Materials, 149, 622-631.
dc.relation.referencesOMEGA (2016). E.Z.N.A.®Soil DNA Kit. Product manual. HiBind®, E.Z.N.A.®, and MicroElute® are registered trademarks of Omega Bio-tek, Inc.
dc.relation.referencesOrtega-Calvo, J. J., Hernandez marine, M., & Saiz jimenez, C. (1991). Biodeterioro de materiales de construcción por Cyanobacterias y algas. International Biodeterioration, 28(1-4), 165-185.
dc.relation.referencesOulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, I. (2015). Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinformatics and biology insights, 9, 75–88. https://doi.org/10.4137/BBI.S12462
dc.relation.referencesPadmanabhan, R., Mishra, A., Raoult, D., Fournier, P. (2013). Genomics and metagenomics in medical microbiology. Journal of Microbiological Methods 95(3):415-424.
dc.relation.referencesPalla, F., & Barresi, G. (2017). Biodeterioration. In Biotechnology and Conservation of Cultural Heritage (pp. 1-30). doi:10.1007/978-3-319-46168-7_1.
dc.relation.referencesPan, X., Ge, Q., Pan, J., (2015). Damage to ancient mural paintings and petroglyphs caused by Pseudonocardia sp. —a review. Acta Microbiol. Sinica 55 (7), 813–818
dc.relation.referencesPapida, S., Murphy, W., and May, E. (2000). Enhancement of physical, weathering of building stones by microbial populations. Int. Biodeter. Biodegr. 46, 305–317. doi: 10.1016/S0964-8305(00)00102-5
dc.relation.referencesPastrana-Ayala, J., Silva-Urrego, Y., Adrada-Molano, J., & Delvasto-Arjona, S. (2019). Propiedades físico-mecánicas de concretos autocompactantes producidos con polvo de residuo de concreto. Informador Técnico, 83(2), 174–190. https://doi.org/10.23850/22565035.2170
dc.relation.referencesPHOEBE CHEN, Y. (2005). Bioinformatics Technologies. Alemania: Springer-Verlag Berlin Heidelberg, 396p. ISBN 3-540-20873-9
dc.relation.referencesPinna, D. (2017). Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives. Apple Academic Press.
dc.relation.referencesPrieto, B., & Silva, B. (2005). Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. International Biodeterioration & Biodegradation, 56, 206-215
dc.relation.referencesPriyamvada H, Akila M, Singh RK, Ravikrishna R, Verma RS, Philip L, Marathe RR, Sahu LK, Dudheer KP, Gunthe SS (2017). Terrestrial macrofungal diversity from the tropical dry evergreen biome of southern India and its potential role in aerobiology. PLos ONE 12(1):e0169333.
dc.relation.referencesRameshkumar, G., Sikha, M., Ponlakshmi, M., Selva Pandiyan, A. y Lalitha, P. (2019). Un caso raro de Myrothecium especies causantes de queratitis micótica: diagnóstico y manejo. Informes de casos de micología médica, 25, 53–55. https://doi.org/10.1016/j.mmcr.2019.07.010
dc.relation.referencesRanalli, G., Zanardini, E. & Sorlini, C. (2009). Microbial biodeterioration of cultural heritage: An overview. In Schaechter, M. (Ed.), Encyclopedia of Microbiology (pp. 191-205). Elsevier.
dc.relation.referencesRavi, R., Walton, K., Khosroheidari, M. (2018). MiSeq: A Next Generation Sequencing Platform for Genomic Analysis. Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, (1706) 223 – 232. https://doi.org/10.1007/978-1-4939-7471-9_12
dc.relation.referencesReichenbach, H. (2006). The Order Cytophagales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30747-8_20
dc.relation.referencesRibas Silva, M., & Pinheiro, S. M. M. (2006). Microbial impact on concrete microstructure of world heritage in Brasilia. In RILEM Workshop Proceedings (pp. 69-77). RILEM.
dc.relation.referencesRoss, M., Russ, C., Costello, M. (2013). Characterizing and measuring bias in sequence data. Genome Biol. 14(5):R51
dc.relation.referencesSand, W. (1997). Microbial mechanism of deterioration of inorganic substrates: a general mechanistic overview. International Biodeterioration & Biodegradation, 40(2-4), 183-190.
dc.relation.referencesScheerer, S., Ortega-Morales, O., & Gaylarde, C. (2009). Microbial deterioration of stone monuments: An updated overview. Advances in Applied Microbiology, 66, 97-139.
dc.relation.referencesSchloss, P., Gevers, D., Westcott, S. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310.
dc.relation.referencesSchüßler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 105(12), 1413-1421. https://doi.org/10.1017/S0953756201005196.
dc.relation.referencesSeaward, M. R. D. (2003). Lichens, agents of monumental destruction. Microbiology Today, 30, 110-112.
dc.relation.referencesSenthilkumar, M., Anandham, R., & Krishnamoorthy, R. (2020). Paecilomyces. In N. Amaresan, M. Senthil Kumar, K. Annapurna, Krishna Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 793-808). Academic Press. ISBN 9780128234143. doi: 10.1016/B978-0-12-823414-3.00041-1.
dc.relation.referencesSim, K., Cox, M., Wopereis, H., Martin, R., Knol, J., Li, M., Cookson, W., Moffatt, M., Kroll, J. (2012). Improved detection of bifidobacteria with optimised 16S rRNAgene based pyrosequencing. PLoS One, 7(3):e32543.
dc.relation.referencesSneath, P. H. A. and Sokal, R. R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman and Company, San Francisco.
dc.relation.referencesSpain, A.M., L.R. Krumholz and M.S. Elshahed. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 3(8):992-1000.
dc.relation.referencesStefanis, N.-A., Teoulakis, P. & Pilinis, C. (2009). Dry deposition efect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Build. Environ., 44, 260–270.
dc.relation.referencesTakaku, H., Kodaira, A. Kimoto, M. Nashimoto, A., Takagi, M. (2006). Microbial communities in the garbage composting with rice hull as an amendment revealed by culturedependent and -independent approaches. J. Biosci. Bioeng. 101:42-50
dc.relation.referencesTaylor, T. N., Krings, M., & Taylor, E. L. (2015). Ascomycota. In T. N. Taylor, M. Krings, & E. L. Taylor (Eds.), Fossil Fungi (pp. 129-171). Academic Press.
dc.relation.referencesTaylor-Brown, A., Vaughan, L., Greub, G., Timms, P., & Polkinghorne, A. (2015). Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathogens and Disease, 73(1), 1-15.
dc.relation.referencesThijs, S., Op De Beeck, M., Beckers, B., Truyens, S., Stevens, V., Van Hamme, J., Weyens, N., & Vangronsveld, J. (2017). Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Frontiers in Microbiology, 8, 494. https://doi.org/10.3389/fmicb.2017.00494
dc.relation.referencesThomas, T., Gilbert, J., Meyer, F. (2012). Metagenomics-a guide from sampling to data analysis. Microbial Informatics and Experimentation 2(3):1-12.
dc.relation.referencesTrimble, W., Keegan, K., D’Souza, M. (2012). Short-read reading-frame predictors are not created equal, sequence error causes loss of signal. BMC Bioinformatics 13:183
dc.relation.referencesTrovão, J., Portugal, A., Soares, F., Paiva, D. S., Mesquita, N., Coelho, C., Pinheiro, A. C., Catarino, L., Gil, F., & Tiago, I. (2019). Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. International Biodeterioration & Biodegradation, 142, 91-102.
dc.relation.referencesTurick, C. E. & Berry, C. J. (2016). Review of concrete biodeterioration in relation to nuclear waste. J. Environ. Radioact. 151, 12–21
dc.relation.referencesUl-Abdin, Z., Anwar, W., & Khitab, A. (2022). Microbiologically induced deterioration of concrete. En H. M. N. Iqbal, M. Bilal, T. A. Nguyen, & G. Yasin (Eds.), Biodegradation and Biodeterioration At the Nanoscale (capítulo 17). Micro and Nano Technologies. Elsevier.
dc.relation.referencesVan Dijk, E., Auger, H., Jaszczyszyn, Y., Thermes, C. (2014). Ten years of nextgeneration sequencing technology. Trends Genet. (9):418–426.
dc.relation.referencesVerdier, T., Coutand, M., Bertron, A., Rogues, Ch., (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Build. Environ. 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030.
dc.relation.referencesVidela, H.A., Herrera, L.K., (2004). Biocorrosion. In: Vazquez-Duhalt, R., Quintero-Ramírez, R. (Eds.), Petroleum Biotechnology. Developments and Perspectives. Elsevier, Amsterdam, pp. 193–218
dc.relation.referencesVilla, F., Stewart, P. S., Klapper, I., Jacob, J. M. & Cappitelli, F. (2016). Subaerial bioflms on outdoor stone monuments: changing the perspective toward an ecological framework. BioScience 66, 285–294
dc.relation.referencesWalker, J. J., & Pace, N. R. (2007). Endolithic microbial ecosystems. Annual Review of Microbiology, 61, 331-347
dc.relation.referencesWang, W., Li, Q., Zhang, Y., & Liu, H. (2010). Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. International Biodeterioration & Biodegradation, 64(6), 461-466. doi:10.1016/j.ibiod.2010.05.001
dc.relation.referencesWard, N., Staley, J., Fuerst, J., Giovannoni, S., Schlesner, H., Stackebrandt, E. (2006). The order planctomycetales, including the genera planctomyces, pirellula, gemmata and isosphaera and the candidatus genera brocadia, kuenenia and scalindua. Chapter 8.1. Prokaryotes 7:757 – 793
dc.relation.referencesWarscheid, T., & Braams, J. (2000). Biodeterioro de la piedra: una revisión. International Biodeterioration & Biodegradation, 46(4), 343-368.
dc.relation.referencesWarscheid, T., & Krumbein, W. E. (1996). General aspects and selected cases. In E. Heitz, H. C. Flemming, & W. Sand (Eds.), Microbially influenced corrosion of materials (pp. 183-190). Springer Verlag.
dc.relation.referencesWhittaker, R. (1972). Evolution and measurement of species diversity. Taxon 21: p. 213– 251.
dc.relation.referencesWilkening, J., Wilke, A., Desai, N. (2009). Using clouds for metagenomics. A case study. In: IEEE Cluster, 2009
dc.relation.referencesYang, C., Li, Y., Zhou, B. et al. (2015). Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Sci Rep 5, 8476 https://doi.org/10.1038/srep08476
dc.relation.referencesZhang, W., Cui, H., & Wong, L. J. C. (2014). Application of next generation sequencing to molecular diagnosis of inherited diseases. Top Current Chemistry, 336(1), 19-45.
dc.relation.referencesZhang, Y., Zeng, Z., Zeng, G., Liu, X., Liu, Z., Chen, M., Liu, L., Li, J., & Xie, G. (2012). Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids and Surfaces B: Biointerfaces, 97, 7-12. https://doi.org/10.1016/j.colsurfb.2012.04.001.
dc.relation.referencesZucconi, L., Gagliardi, M., Isola, D., Onofri, S., Andaloro, M. C., Pelosi, C. (2012). Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour's cave (Vallerano, Italy). International Biodeterioration & Biodegradation, 70, 40-46.
dc.rightsDerechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.armarcBiodeterioro
dc.subject.armarcPatrimonio cultural
dc.subject.armarcMicroorganismos biodeteriógenos
dc.subject.armarcComunidad microbiana
dc.subject.armarcMetagenómica
dc.subject.armarcCasa de la Cultura Piedra del Sol
dc.subject.proposalBiodeterioro del concretospa
dc.subject.proposalMicrobiocenosis del concretospa
dc.subject.proposalEdificaciones antiguasspa
dc.subject.proposalPosibles bienes de interes culturalspa
dc.subject.proposalBiodeterioration of concreteeng
dc.subject.proposalMicrobiocenosis of concreteeng
dc.subject.proposalAncient buildingseng
dc.subject.proposalPossible properties of cultural interesteng
dc.titleCaracterización de la Microbiocenosis Asociada al Deterioro en Edificaciones Antiguas y Posibles Bienes de Interés Cultural en el área Metropolitana de Bucaramanga: una Aproximación Metagenómicaspa
dc.title.translatedCharacterization of the Microbiocenosis Associated With Deterioration in Ancient Buildings and Possible Assets of Cultural Interest in the Metropolitan area of Bucaramanga: a Metagenomic Approach.
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/submittedVersion
dcterms.audienceTodas las Audienciasspa
dspace.entity.typePublication
Archivos
Paquete original
Mostrando 1 - 4 de 4
Imagen en miniatura
Nombre:
Label.png
Tamaño:
110.82 KB
Formato:
Portable Network Graphics
Descripción:
Imagen en miniatura
Nombre:
Caracterización_de_la_Microbiocenosis_Asociada_al_Deterioro_en_Edificaciones_Antiguas_y_Posibles_Bienes_de_Interés_Cultural_en_el_área_Metropolitana_de_Bucaramanga_una_Aproximación_Metagenó.pdf
Tamaño:
1.58 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Correo_ Juliana Forero - Outlook.pdf
Tamaño:
89.94 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Similitud_microbiocenosis en edificaciones.pdf
Tamaño:
3.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Paquete de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: