Publicación: Producción de Sideróforos en Bacterias Aisladas de la Rizosfera del Cultivo de Persea americana en Chinácota, Norte de Santander
Producción de Sideróforos en Bacterias Aisladas de la Rizosfera del Cultivo de Persea americana en Chinácota, Norte de Santander
dc.contributor.advisor | Galvis-Serrano, Néstor Fabián | |
dc.contributor.author | Girón-Navarro Keyla Adaia | |
dc.contributor.author | Muñoz-Sánchez, Isabel Cristina | |
dc.contributor.author | Rivera-Avellaneda, Liliana Valentina | |
dc.contributor.jury | Parada-Jurado, Holver Smith | |
dc.contributor.jury | Peñaranda-Lizarazo, Elena María | |
dc.contributor.researchgroup | DOLLY | |
dc.date.accessioned | 2025-04-30T15:52:32Z | |
dc.date.available | 2025-04-30T15:52:32Z | |
dc.date.issued | 2024-12-05 | |
dc.description | Digital | spa |
dc.description.abstract | El objetivo de esta investigación es establecer la producción de sideróforos en bacterias aisladas de la rizosfera del cultivo de Persea americana. La población del estudio consistió en rizobacterias presentes en el suelo rizosférico de un cultivo de P. americana ubicado en Chinácota, Norte de Santander. La muestra estuvo conformada por rizobacterias productoras de sideróforos aisladas de ocho muestras de suelo recolectadas mediante un muestreo no probabilístico por cuotas. Metodología: Las bacterias se aislaron en medios selectivos NFB y Ashby, y su capacidad para producir sideróforos se evaluó cualitativamente mediante medio CAS-agar. Además, se identificaron genes relacionados con la síntesis de sideróforos mediante PCR, diseñando cebadores específicos para compuestos como enterobactina y pseudobactina. Las especies bacterianas se caracterizaron molecular y bioquímicamente. Resultados: De las 505 colonias aisladas, 54 presentaron halos naranjas en CAS-agar, indicando actividad siderofórica. De estas, solo 24 mostraron la presencia de genes específicos en pruebas de PCR, confirmando la producción de sideróforos como pyoverdina y rhizobactina. Las bacterias identificadas incluyen Pseudomonas fluorescens, Pseudomonas aeruginosa y Enterobacter cloacae. Conclusiones: Se identificaron genes relacionados con la síntesis de enterobactina, pyoverdina, rhizobactina y pseudobactina, destacando su potencial como PGPRs. Los resultados sugieren la necesidad de investigaciones adicionales en genómica estructural y funcional para aprovechar estos microorganismos en biofertilización, biocontrol y biorremediación. | spa |
dc.description.abstract | The objective of this research is to establish the production of siderophores in bacteria isolated from the rhizosphere of Persea americana crops. The study population consisted of rhizobacteria present in the rhizospheric soil of a P. americana crop located in Chinácota, Norte de Santander. The sample was composed of siderophore-producing rhizobacteria isolated from eight soil samples collected using a non-probabilistic quota sampling method. Methodology: The bacteria were isolated in selective media NFB and Ashby, and their ability to produce siderophores was qualitatively evaluated using CAS-agar medium. Additionally, genes related to siderophore synthesis were identified using PCR with specifically designed primers for compounds such as enterobactin and pseudobactin. The bacterial species were characterized molecularly and biochemically. Results: Of the 505 isolated colonies, 54 exhibited orange halos in CAS-agar, indicating siderophore activity. Of these, only 24 showed the presence of specific genes in PCR tests, confirming the production of siderophores such as pyoverdine and rhizobactin. The identified bacteria included Pseudomonas fluorescens, Pseudomonas aeruginosa, and Enterobacter cloacae. Conclusions: Genes related to the synthesis of enterobactin, pyoverdine, rhizobactin, and pseudobactin were identified, highlighting their potential as PGPRs. The findings suggest the need for further research in structural and functional genomics to utilize these microorganisms in biofertilization, biocontrol, and bioremediation. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | |
dc.description.researcharea | Biotecnologia | |
dc.description.tableofcontents | Resumen ........................................................................................................................................ 18 Summary ....................................................................................................................................... 24 Introducción .................................................................................................................................. 26 Descripción del Problema ............................................................................................................. 27 Formulación del Problema ............................................................................................................ 28 Antecedentes de la Investigación .................................................................................................. 28 Antecedentes Internacionales ........................................................................................................ 29 Antecedentes Nacionales .............................................................................................................. 31 Antecedentes Regionales .............................................................................................................. 32 Marco Teórico ............................................................................................................................... 32 Rizosfera ....................................................................................................................................... 32 Rizobacterias ................................................................................................................................. 32 Interacción Planta Microorganismo .............................................................................................. 34 Mecanismos de Acción de las Rizobacterias ................................................................................ 35 Mecanismos de Acción Directos .................................................................................................. 35 Sideróforos .................................................................................................................................... 38 Persea americana ........................................................................................................................... 41 Justificación .................................................................................................................................. 42 Objetivos ....................................................................................................................................... 43 Objetivo General ........................................................................................................................... 43 Objetivos Específicos.................................................................................................................... 43 Metodología .................................................................................................................................. 43 Tipo de Investigación .................................................................................................................... 43 Sitio y Periodo del Estudio ........................................................................................................... 43 Población....................................................................................................................................... 44 Muestra ......................................................................................................................................... 44 Métodos......................................................................................................................................... 44 Identificación de Bacterias a Partir de Muestras de Rizosfera de Plantas de P. Americana por Medio de Técnicas Microbiológicas, Bioquímicas y Moleculares ........... 44 Determinación de la Producción de Sideróforos en Rizobacterias a Través de Ensayos Cualitativos ................................................................................................................................... 48 Detección de los Genes Relacionados con la Producción de Sideróforos .................................... 50 Técnicas e Instrumentos de Recolección de Datos ....................................................................... 52 Técnica de Procesamiento y Análisis de Datos ............................................................................ 52 Sistema de Hipótesis ..................................................................................................................... 52 Hipótesis Nula ............................................................................................................................... 52 Hipótesis Alternativa .................................................................................................................... 53 Análisis y Discusión de Resultados .............................................................................................. 53 Análisis de Resultados .................................................................................................................. 53 Análisis del Suelo e Identificación de Bacterias a Partir de Muestras de Rizosfera de Plantas de P. Americana por Medio de Técnicas Microbiológicas ................. 53 Determinación de la Producción de Sideróforos en Rizobacterias a Través de Ensayos Cualitativos ................................................................................................................................... 56 Identificación de los Genes Relacionados con la Síntesis de Sideróforo en Rizobacterias Mediante el Diseño de Cebadores y la Estandarización de la PCR .............. 56 Identificación Bioquímica y Molecular de Bacterias Productoras de Sideróforos ....................... 60 Discusión....................................................................................................................................... 62 Conclusiones ................................................................................................................................. 65 Referencias Bibliográficas ............................................................................................................ 66 Apéndices ...................................................................................................................................... 82 | spa |
dc.format.extent | 86 p. | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/msword | |
dc.identifier.instname | Universidad de Santander | |
dc.identifier.local | T 17.24 G476p | |
dc.identifier.reponame | Repositorio Digital Universidad de Santander | |
dc.identifier.repourl | https://repositorio.udes.edu.co | |
dc.identifier.uri | https://repositorio.udes.edu.co/handle/001/11697 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Santander | |
dc.publisher.branch | Cúcuta | |
dc.publisher.faculty | Facultad de Ciencias Médicas y de la Salud | |
dc.publisher.place | Cúcuta, Colombia | |
dc.publisher.program | Bacteriología y Laboratorio Clínico | |
dc.relation.references | 1. Wang Y, Narayanan M, Shi X, Chen X, Li Z, Natarajan D, et al. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Front Microbiol. [Internet]. 2022 [Consulted 2023 June 16]; 13. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2022.966226/full | |
dc.relation.references | 2. Bahar NH, Lo M, Sanjaya M, Van Vianen J, Alexander P, Ickowitz A, Sunderland T. Meeting the food security challenge for nine billion people in 2050: What impact on forests. Global Environmental Change. [Internet]. 2020 [Consulted 2023 June 16]; 62. Available from: https://doi.org/10.1016/j.gloenvcha.2020.102056 | |
dc.relation.references | 3. Glaros A, Marquis S, Major C, Quarshie P, Ashton L, Green AG, Kc KB, Newman L, Newell R, Yada RY, Fraser EDG. Horizon scanning and review of the impact of five food and food production models for the global food system in 2050. Trends in Food Science & Technology. [Internet]. 2022 [Consulted 2023 June 17]; 119: 550-564. Available from: https://doi.org/10.1016/j.tifs.2021.11.013 | |
dc.relation.references | 4. Colombia. Departamento Administrativo Nacional de Estadística (DANE). Encuesta Nacional Agropecuaria (ENA) 2019 [Internet]. [Consulted 2023 June 17]; Available from:https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019.pdf | |
dc.relation.references | 5. Espinosa Borrero MA. Desaparición de cultivos, una alerta en el campo de Colombia. [Internet]. El Tiempo 15 de julio de 2019. [Consulted 2023 June 18]; Available from: https://www.eltiempo.com/colombia/otras-ciudades/situacion-del-campo-en-colombia-millones-de-hectareas-sin-cultivar-387276 | |
dc.relation.references | 6. Castaño Giraldo NE. & Cardona Gómez M.A. Factores determinantes en la inestabilidad del sector agrícola colombiano. En-Contex Rev de Invest en Adm, Contab, Econ y Soc [Internet]. 2014 [Consulted 2023 July 05]; (2):91-107. Available from: https://www.redalyc.org/articulo.oa?id=551856273006 | |
dc.relation.references | 7. Velasco Jiménez A, Castellanos Hernández O, Acevedo Hernández G, Aarland RC, & Rodríguez Sahagún A. Bacterias rizosféricas con beneficios potenciales en la agricultura. Terra Latinoam. [Internet]. 2020 [Consulted 2023 July 06]; 38(2):333-345. Available from: https://www.terralatinoamericana.org.mx/index.php/terra/article/view/470/1034 | |
dc.relation.references | 8. Yadav KK & Sarkar S. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ and Ecol. [Internet]. 2019 [Consulted 2023 July 07]; 37(1), 89-93. Available from: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20193074647 | |
dc.relation.references | 9. Pahari A, Pradhan A, Nayak SK, Mishra BB. Bacterial Siderophore as a Plant Growth Promoter. In: Patra J, Vishnuprasad C, Das G. (eds) Microbial Biotechnology. Singapure: Springer; 2017. 163-180. Available from: https://doi.org/10.1007/978-981-10-6847-8_7 | |
dc.relation.references | 10. Mantilla Ballesteros ML. & Garzon Rueda LD. Alternativas para el proceso de recuperación de suelos contaminados por el uso de agroquímicos en el cultivo del tomate en el municipio de Gramalote departamento Norte de Santander Colombia. [Trabajo de Grado en Ingeniera Ambiental]. Bogotá: Universidad Nacional Abierta y a Distancia – UNAD; 2021. [Consulted 2023 July 07]; Available from: https://repository.unad.edu.co/handle/10596/41349 | |
dc.relation.references | 11. Food and Agriculture Organization of the United Nations (FAO). The future of food and agriculture – Alternative pathways to 2050. FAO [Internet] 2018; 224 pp. [Consulted 2023 July 17]; Available from: https://www.fao.org/3/I8429EN/i8429en.pdf | |
dc.relation.references | 12. Pahalvi HN, Majeed LR, Rashid S, Nisar B, & Kamili AN. Chemical fertilizers and their impact on soil health. In: Dar GH, Bhat RA, Mehmood MA, Hakeem KR. (eds) Microbiota and Biofertilizers. Cham: Springer; 2021 1-20. Available from: https://link.springer.com/chapter/10.1007/978-3-030-61010-4_1#citeas | |
dc.relation.references | 13. Donnini S, Castagna A, Ranieri A, Zocchi G. Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of plant physiology. [Internet]. 2009 [Consulted 2023 July 18]; 166(11): 1181-1193. Available from: https://doi.org/10.1016/j.jplph.2009.01.007 | |
dc.relation.references | 14. Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW. A soil bacterium regulates plant acquisition of iron via deficiency‐inducible mechanisms. The Plant Journal. [Internet]. 2009 [Consulted 2023 July 20]; 58(4): 568-577. Available from: https://doi.org/10.1111/j.1365-313X.2009.03803.x | |
dc.relation.references | 15. Sun Y, Wu J, Shang X, Xue L, Ji G, Chang S, et al. Screening of siderophore-producing bacteria and their effects on promoting the growth of plants. Curr Microbiol [Internet]. 2022 [Consulted 2023 July 21]; 79(5): 150. Available from: https://www.researchgate.net/publication/359850278_Screening_of_Siderophore-Producing_Bacteria_and_Their_Effects_on_Promoting_the_Growth_of_Plants | |
dc.relation.references | 16. Amin M, Vyas TK. Characterization of siderophore produced by Pseudomonas sp. MT and its antagonist activity against Fusarium oxysporum f sp. cubense and F. oxysporium f sp. ciceris. Not Sci Biol [Internet]. 2022 [Consulted 2023 august 01]; 14(4): 1-11. Available from: https://www.notulaebiologicae.ro/index.php/nsb/article/view/11298/9516 | |
dc.relation.references | 17. Sultana S, Alam S. & Karim MM. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J. Agric Food Res. [Internet]. 2021 [Consulted 2023 August 03]; 4. Available from: https://www.sciencedirect.com/science/article/pii/S2666154321000521?via%3Dihub | |
dc.relation.references | 18. Pahari A. & Mishra BB. Characterization of Siderophore Producing Rhizobacteria and Its Effect on Growth Performance of Different Vegetables. Inter Jour Curr Microbiol App Sci. [Internet]. 2017 [Consulted 2023 August 05]; 6(5): 1398-1405. Available from: https://www.researchgate.net/publication/316924023_Characterization_of_Siderophore_Producing_Rhizobacteria_and_Its_Effect_on_Growth_Performance_of_Different_Vegetables | |
dc.relation.references | 19. Kumar V, Menon S, Agarwal H. & Gopalakrishnan D. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour Effic Technol. [Internet]. 2017 [Consulted 2023 August 10]; 3(4): 434-439. Available from: https://www.sciencedirect.com/science/article/pii/S2405653716300586?via%3Dihub | |
dc.relation.references | 20. Barrera Galicia GC. Análisis y caracterización de sideróforos producidos por rizobacterias para el control de la antracnosis causada por Colletotrichum gloeosporioides en frutos de aguacate [Tesis de grado Maestría en Ciencias Especialidad Biotecnología de plantas] Irapuato: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; 2016 [Consulted 2023 August 10]; Available from: https://repositorio.cinvestav.mx/handle/cinvestav/1578 | |
dc.relation.references | 21. Raval AA. & Desai PB. Screening and Characterization of Several siderophore Producing Bacteria as Plant Growth-Promoters and Biocontrolling agents. Int Journ of Phar & Lif Sci. [Internet]. 2015 [Consulted 2023 August 12]; 6(10/11): 4803-4811. Available from: https://www.ijplsjournal.com/issues%20PDF%20files/2015/October-November-2015/9.pdf | |
dc.relation.references | 22. Pérez Cordero A, Chamorro Anaya L. & Doncel Mestra A. Bacterias endófitas promotoras de crecimiento aisladas de pasto colosoana, departamento de Sucre, Colombia. Rev MVZ Córdoba. [Internet]. 2018 [Consulted 2023 August 13]; 23(2): 6696-6709. Available from: https://revistamvz.unicordoba.edu.co/article/view/1347 | |
dc.relation.references | 23. Paternina HR, Pérez CA. & Vitola RD. Presencia de bacterias rizosféricas resistentes a mercurio en suelos del sur de Bolívar, Colombia. Rev Colomb Cienc Anim – RECIA. [Internet]. 2017 [Consulted 2023 August 15]; 9(2): 301-310. Available from: https://revistas.unisucre.edu.co/index.php/recia/article/view/612 | |
dc.relation.references | 24. Florez Márquez JD, Leal Medina GI, Ardila Leal LD. & Cárdenas Caro DM. Aislamiento y caracterización de rizobacterias asociadas a cultivos de arroz (Oryza sativa L.) del Norte de Santander (Colombia). Agrociencia. [Internet]. 2017 [Consulted 2023 August 18]; 51: 373-391 Available from: https://www.scielo.org.mx/pdf/agro/v51n4/1405-3195-agro-51-04-00373.pdf | |
dc.relation.references | 25. Reyes Jaramillo, I. La micorriza arbuscular (MA) centro de la rizósfera: comunidad microbiológica dinámica del suelo. Rev Contac. [Internet]. 2011 [Consulted 2023 August 20]; 81: 17-23. Available from: https://es.scribd.com/document/742691878/Seminario-4-Articulo-Jaramillo-2011-Micorriza-Marcado | |
dc.relation.references | 26. Murray, PR. Microbiología médica. 7 ed. Elsevier castellano; 2014. | |
dc.relation.references | 27. Cano MA. Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. Una revisión. Rev udca actual divulg cient. [Internet]. 2011 [Consulted 2023 August 22]; 14(2): 15-31. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012342262011000200003&lng=en. | |
dc.relation.references | 28. Bolívar Anillo HJ, Contreras Zentella ML. & Teherán Sierra LG. Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. Rev Esp Cienc Quím Biol. [Internet]. 2016 [Consulted 2023 August 28]; 19(2): 102-108. Available from: https://www.researchgate.net/publication/305737974_Burkholderia_tropica_una_bacteria_con_gran_potencial_para_su_uso_en_la_agricultura | |
dc.relation.references | 29. Méndez Gómez M, Castro Mercado E. & García Pineda E. Azospirillum una rizobacteria con uso potencial en la agricultura. Biológicas. [Internet]. 2014 [Consulted 2023 August 30]; 16(1): 11-18. Available from: https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=172&path%5B%5D=pdf | |
dc.relation.references | 30. Domingues Duarte C, Cecato U, Trento Biserra T, Mamédio D. & Galbeiro S. Azospirillum spp. en gramíneas y forrajeras. Revisión. Rev Mex Cienc Pecu. [Internet]. 2020 [Consulted 2023 September 03]; 11(1): 223-240. Available from: https://www.researchgate.net/publication/339545745_Azospirillum_spp_en_gramineas_y_forrajeras_Revision/link/5e6ff51f92851c1a689a5390/download | |
dc.relation.references | 31. Tejera Hernández B, Rojas Badía MM. & Heydrich Pérez M. Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC. [Internet]. 2011 [Consulted 2023 September 06]; 42(3): 131-138. Available from: https://www.redalyc.org/articulo.oa?id=181222321004 | |
dc.relation.references | 32. Guzmán Duchen D. & Montero Torres J. Interacción de bacterias y plantas en la fijación del nitrógeno. Rev de Inv e Innova Agro y de Rec Natu. [Internet]. 2021 [Consulted 2023 September 13]; 8(2): 87-101. Available from: https://doi.org/10.53287/uyxf4027gf99e | |
dc.relation.references | 33. Martínez LL, Martínez Peniche RA, Hernández Iturriaga M, Arvizu Medrano SM. y Pacheco Aguilar JR. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Rev. Fitotec Mex. [Internet]. 2013 [Consulted 2023 September 24]; 36(1): 63-69. Available from: https://www.researchgate.net/publication/262786197_Caracterizacion_de_rizobacterias_aisladas_de_tomate_y_su_efecto_en_el_crecimiento_de_tomate_y_pimiento | |
dc.relation.references | 34. Chandran H, Meena M. & Swapnil P. Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability. [Internet]. 2021 [Consulted 2023 September 25]; 13(19). Available from: https://doi.org/10.3390/su131910986 | |
dc.relation.references | 35. Bonilla Buitrago R, González de Bashan LE. y Pedraza RO. Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. [Internet] Mosquera: Agrosavia editorial; 2021. [Consulted 2023 October 10]; Available from: https://editorial.agrosavia.co/index.php/publicaciones/catalog/book/230 | |
dc.relation.references | 36. Molina Romero D, Bustillos Cristales MR, Rodríguez Andrade O, Morales García YE, Santiago Saenz Y, Castañeda Lucio M. et al. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas. [Internet]. 2015 [Consulted 2023 October 12]; 17(2): 24-34. Available from: https://www.researchgate.net/publication/293086504_Mecanismos_de_fitoestimulacion_por_rizobacterias_aislamientos_en_America_y_potencial_biotecnologico?enrichId=rgreq-f65cb344576c0e7739080ed75a3316a4-XXX&enrichSource=Y292ZXJQYWdlOzI5MzA4NjUwNDtBUzozMjYwMTgxODQzMDI1OTJAMTQ1NDc0MDIwMDU3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf | |
dc.relation.references | 37. Blanco EL. & Castro Y. Antagonismo de rizobacterias sobre hongos fitopatógenos, y su actividad microbiana con potencial biofertilizante, bioestimulante y biocontrolador. Rev colomb biotecnol. [Internet]. 2021 [Consulted 2023 October 15]; 23(1): 6-16. Available from:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012334752021000100006&lng=en. | |
dc.relation.references | 38. Moreno Reséndez A, Carda Mendoza V, Reyes Carrillo JL, Vásquez Arroyo J. & Cano Ríos P. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Rev colomb biotecnol. [Internet]. 2018 [Consulted 2023 October 21]; 20(1): 68-83. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012334752018000100068 | |
dc.relation.references | 39. Gull M. & Hafeez FY. Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. Afr. J. Microbiol. Res. [Internet]. 2012 [Consulted 2023 October 27]; 6(33): 6308-6318. Available from: https://academicjournals.org/journal/AJMR/article-abstract/ABEDEA826828 | |
dc.relation.references | 40. Aguado Santacruz GA, Moreno Gómez B, Jiménez Francisco B, García Moya E. y Preciado Ortiz RE. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: una síntesis. Rev Fitotec Mex. [Internet]. 2012 [Consulted 2023 October 27]; 35(1): 9-21. Available from: https://www.scielo.org.mx/pdf/rfm/v35n1/v35n1a4.pdf | |
dc.relation.references | 41. Vejan P, Abdullah R, Khadiran T, Ismail S, & Nasrulhaq Boyce A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability - A Review. Molecules. [Internet]. 2016 [Consulted 2023 November 10]; 21(5): 573. Available from: https://www.mdpi.com/1420-3049/21/5/573 | |
dc.relation.references | 42. Naranjo Morán J, Vera Morales M. & Mora González A. Acumulaciones de hierro en agroecosistemas bananeros (Milagro, Ecuador): Una revisión bibliográfica de algunos factores que intervienen en la salud y nutrición del cultivo. Siembra. [Internet]. 2021 [Consulted 2023 November 16]; 8(2). Available from: http://scielo.senescyt.gob.ec/scielo.php?pid=S247788502021000200001&script=sci_arttext | |
dc.relation.references | 43. González Mendoza D. & Zapata Pérez O. Mecanismos de tolerancia a elementos potencialmente tóxicos en plantas. Bol Soc Bot Mex [Internet]. 2008 [Consulted 2023 November 28]; (82): 53-61. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S036621282008000100005&lng=es. | |
dc.relation.references | 44. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Principales Frutas Tropicales Análisis del mercado Resultados preliminares 2022. [Internet]. [Consulted 2024 January 08]; Available from: https://www.fao.org/3/cc3939es/cc3939es.pdf | |
dc.relation.references | 45. Colombia. Departamento administrativo nacional de estadística (DANE). Cultivo del aguacate Hass (Persea americana Mill; Persea nubigena var. Guatemalensis x Persea americana var. drymifolia), plagas y enfermedades durante la temporada de lluvias. [Consulted 2024 January 18] Available from: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_ago_2016.pdf | |
dc.relation.references | 46. Vázquez Elorza A, Patiño Karam JP, Sánchez Gómez J, Aguilar Juarez O, Rodríguez Romero AM, & Vergara de la Torre R. Oportunidades de innovación y sustentabilidad en la cadena de valor del aguacate y sus derivados en Jalisco y Michoacán, México. 1ª ed. México: CIATEJ; 2021. | |
dc.relation.references | 47. Supo Condori, JA. Metodología de la Investigación Científica. 3ed. SINCIE; 2020. | |
dc.relation.references | 48. Hernández Sampieri R, Fernández Collado C, & Baptista Lucio P. Metodología de la Investigación. México: McGRAW - HILL INTERAMERICANA DE MÉXICO; 1997. | |
dc.relation.references | 49. Supo J. Cómo empezar una Tesis. [Internet]. 1ª ed. Perú: BIOESTADÍSTICO EIRL; 2015. [Consulted 2024 January 20] Available from: https://asesoresenturismoperu.wordpress.com/wp-content/uploads/2016/03/107josc3a9-supo-cc3b3mo-empezar-una-tesis.pdf | |
dc.relation.references | 50. Nel Quezada L. Metodología de la Investigación. [Internet]. 1ª ed. Perú: Editorial Macro EIRL; 2019. [Consulted 2024 January 27] Available from: https://api.pageplace.de/preview/DT0400.9788426733047_A41299735/preview9788426733047_A41299735.pdf | |
dc.relation.references | 51. Hernández Sampieri R, Fernández Collado C, Baptista Lucio P. Metodología de la Investigación. 6ed. México: McGraw-Hill; 2014. | |
dc.relation.references | 52. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. [Internet]. 1987 [Consulted 2024 February 20]; 160(1):47-56. Available from: https://europepmc.org/article/med/2952030 | |
dc.relation.references | 53. Trinidad Santos A. Importancia de la materia orgánica en el suelo. Agro productividad. [Internet]. 2016 [Consulted 2024 February 26]; 9(8). Available from: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/802 | |
dc.relation.references | 54. Aguirre Forero SE, Piraneque Gambasica NV, & Cruz O’Byrne RK. Relación entre nutrientes con carbono, nitrógeno y materia orgánica en suelos de la zona bananera de Colombia. Rev de Inv Agra y Amb. [Internet]. 2022 [Consulted 2024 March 10]; 13(2): 93-112. Available from: https://www.researchgate.net/publication/361449116_Relacion_entre_nutrientes_con_carbono_nitrogeno_y_materia_organica_en_suelos_de_la_zona_bananera_de_Colombia | |
dc.relation.references | 55. Baars O, Zhang X, Morel FM. & Seyedsayamdost MY. The siderophore metabolome of Azotobacter vinelandii. Appli and environ microbiol. [Internet]. 2016 [Consulted 2024 May 29]; 82(1): 27-39. Available from:https://journals.asm.org/doi/10.1128/aem.03160-15 | |
dc.relation.references | 56. Wichard T, Bellenger JP, Morel FM. & Kraepiel AM. Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ sci & techno. [Internet]. 2009 [Consulted 2024 May 29]; 43(19): 7218-7224. Available from: https://doi.org/10.1021/es8037214 | |
dc.relation.references | 57. Jetiyanon K. Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin Jour. Sci. Techn. [Internet]. 2015 [Consulted 2024 June 15]; 37(1): 29-36. Available from: https://www.researchgate.net/publication/282161862_Multiple_Mechanisms_of_Enterobacter_asburiae_strain_RS83_for_Plant_Growth_Enhancement | |
dc.relation.references | 58. Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Revie Microbio. [Internet]. 2020 [Consulted 2024 July 15]; 18(3): 152-163. Available from: https://www.nature.com/articles/s41579-019-0284-4 | |
dc.relation.references | 59. Press CM, Loper JE, Kloepper JW. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopath. [Internet]. 2007 [Consulted 2024 July 19]; 91(6): 593-598. Available from: https://doi.org/10.1094/PHYTO.2001.91.6.593 | |
dc.relation.references | 60. Ferreira MJ, Silva H, Cunha A. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review. Pedosph. [Internet]. 2019 [Consulted 2024 August 27]; 29(4): 409-420. Available from: https://doi.org/10.1016/S1002-0160(19)60810-6 | |
dc.relation.references | 61. Nithyapriya S, Lalitha S, Sayyed RZ, Reddy M, Dailin D, El Enshasy H, et al. Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustain. [Internet]. 2021 [Consulted 2024 September 03]; 13(10): 5394. Available from: https://doi.org/10.3390/su13105394 | |
dc.relation.references | 62. R. Siderophore: Structural and functional characterisation-A comprehensive review. Agri. [Internet]. 2015 [Consulted 2024 September 23]; 61(3): 97. Available from: https://doi.org/10.1515/agri-2015-0015 | |
dc.relation.references | 63. Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopath. [Internet]. 2007 [Consulted 2024 October 15]; 97(2): 250-256. Available from: https://doi.org/10.1094/PHYTO-97-2-0250 | |
dc.relation.references | 64. Garg G, Kumar S, Bhati S. Siderophore in plant nutritional management: role of endophytic bacteria. Vol 3. 1a ed. Cham: Springer; 2021 [Consulted 2024 October 16]; Available from: https://doi.org/10.1007/978-3-030-65447-4_14 | |
dc.relation.references | 65. Ferreira CM, Soares HM & Soares EV. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ. [Internet]. 2019 [Consulted 2024 November 07]; 682:779-799. Available from: https://doi.org/10.1016/j.scitotenv.2019.04.225 | |
dc.relation.references | 66. Galvis F, Ageitos L, Martínez Matamoros D, Barja JL, Rodríguez J, Lemos ML, et al. The marine bivalve molluscs pathogen Vibrio neptunius produces the siderophore amphibactin, which is widespread in molluscs microbiota. Environ. Microbiol. [Internet]. 2020 [Consulted 2024 November 15]; 22(12): 5467-5482. Available from: https://doi.org/10.1111/1462-2920.15312 | |
dc.relation.references | 67. Zhang X, Baars O, Morel FM. Genetic, structural, and functional diversity of low and high-affinity siderophores in strains of nitrogen fixing Azotobacter chroococcum. Metallomics. [Internet]. 2019 [Consulted 2024 November 15]; 11(1): 201-212. Available from: https://doi.org/10.1039/c8mt00236c | |
dc.relation.references | 68. Nascimento FX, Hernández AG, Glick BR, Rossi MJ. Plant growth- promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol. Rep. [Internet]. 2020 [Consulted 2024 November 15]; 25. Available from: https://doi.org/10.1016/j.btre.2019.e00406 | |
dc.relation.references | 69. Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. [Internet]. 2014 [Consulted 2024 November 15]; 69: 95-105. Available from: https://doi.org/10.1016/j.biombioe.2014.07.015 | |
dc.relation.references | 70. Boro AL. & Boro P. The Effect of industrial heavy metal pollution on microbial abundance and diversity in soils - A Review. In: Hernandez Soriano MC. Environmental Risk Assessment of Soil Contamination. Australia: InTech; 2014. 769-770. Available from: https://doi.org/10.5772/57406 | |
dc.relation.references | 71. Hesse E, O'Brien S, Tromas N, Bayer F, Lujan AM, M. van Veen E. et al. Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination. Ecol. Lett. [Internet]. 2017 [Consulted 2024 November 15]; 21(1): 117-127. Available from: https://doi.org/10.1111/ele.12878 | |
dc.relation.references | 72. Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, et al. Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front. Microbiol. [Internet]. 2022 [Consulted 2024 November 15]; 13: 898979. Available from: https://doi.org/10.3389/fmicb.2022.898979 | |
dc.relation.references | 73. David SR. & Geoffroy VA. A review of asbestos bioweathering by siderophore-producing Pseudomonas: A potential strategy of bioremediation. Microorganisms. [Internet]. 2020 [Consulted 2024 November 16]; 8(12): 1870. Available from: https://doi.org/10.3390/microorganisms8121870 | |
dc.relation.references | 74. Tatung M. & Deb CR. Bacterial siderophores as potential biocontrol agent against phytopathogens. In: Bioresources Conservation and sustenaibility. Mittal publications; 2024. 423-436. | |
dc.relation.references | 75. Chamorro Anaya L, Pérez Cordero A. & Montes Vergara, DE. Identification Of Plant Growth-Promoting Rhizobacteria Associated With Persea Americana Plantations. J. Posit. Psychol. [Internet]. 2023 [Consulted 2024 November 16]; 7(1): 313-323. Available from: https://mail.journalppw.com/index.php/jpsp/article/view/15119 | |
dc.relation.references | 76. Tzec-Interián JA, Desgarennes D, Carrión G, Monribot-Villanueva JL, Guerrero Analco JA, Ferrera-Rodríguez O, et al. Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS One. [Internet]. 2020 [Consulted 2024 November 16]; 15(4): e0231215. Available from: https://doi.org/10.1371/journal.pone.0231215 | |
dc.relation.references | 77. Kügler S, Cooper RE, Boessneck J, Küsel K, & Wichard, T. Rhizobactin B is the preferred siderophore by a novel Pseudomonas isolate to obtain iron from dissolved organic matter in peatlands. Biometals. [Internet]. 2020 [Consulted 2024 November 16]; 33(6): 415-433. Available from: https://doi.org/10.1007/s10534-020-00258-w | |
dc.relation.references | 78. Castignetti D. Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia (Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. Curr microbiol. [Internet]. 1997 [Consulted 2024 November 16]; 34: 250-257. Available from: https://doi.org/10.1007/s002849900178 | |
dc.relation.references | 79. Timofeeva AM, Galyamova MR, & Sedykh SE. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants. [Internet]. 2022 [Consulted 2024 November 16]; 11(22): 3065. Available from: https://doi.org/10.3390/plants11223065 | |
dc.relation.references | 80. Fiedler HP, Krastel P, Müller J, Gebhardt K, & Zeeck A. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol. Lett. [Internet]. 2001 [Consulted 2024 November 16]; 196(2): 147-151. Available from: https://doi.org/10.1111/j.1574-6968.2001.tb10556.x | |
dc.relation.references | 81. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, et al. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. [Internet]. 2010 [Consulted 2024 November 16]; 6(5): e1000943. Available from: https://doi.org/10.1371/journal.pgen.1000943 | |
dc.relation.references | 82. Khalifa A. Enterobacter. In: Beneficial Microbes in Agro-Ecology. Academic Press; 2020. 259-270. | |
dc.rights | Derechos Reservados - Universidad de Santander, 2024. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Biofertilizantes | spa |
dc.subject.proposal | Biocontrol | spa |
dc.subject.proposal | Hierro | spa |
dc.subject.proposal | Rizobacterias | spa |
dc.subject.proposal | Sideróforos | spa |
dc.subject.proposal | Persea americana | spa |
dc.subject.proposal | Biofertilizers | eng |
dc.subject.proposal | Biocontrol | eng |
dc.subject.proposal | Rhizobacteria | eng |
dc.subject.proposal | Siderophores | eng |
dc.subject.proposal | Persea americana | eng |
dc.title | Producción de Sideróforos en Bacterias Aisladas de la Rizosfera del Cultivo de Persea americana en Chinácota, Norte de Santander | spa |
dc.title.translated | Siderophore Production in Bacteria Isolated from the Rhizosphere of Persea Americana Cultivation in Chinácota, Norte de Santander | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_71e4c1898caa6e32 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/submittedVersion | |
dcterms.audience | Todas las Audiencias | |
dspace.entity.type | Publication |
Archivos
Paquete original
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- Producción_de_Sideróforos_en_Bacterias_Aisladas_de_la_Rizosfera_del_Cultivo_de_Persea_americana_en_Chinácota_Norte_de_Santander (2).docx
- Tamaño:
- 10.81 MB
- Formato:
- Microsoft Word XML
- Descripción:
No hay miniatura disponible
- Nombre:
- Producción_de_Sideróforos_en_Bacterias_Aisladas_de_la_Rizosfera_del_Cultivo_de_Persea_americana_en_Chinácota_Norte_de_Santander (2).pdf
- Tamaño:
- 4.05 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Informe de Porcentaje de Similitud de Texto.pdf
- Tamaño:
- 2.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Paquete de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: