Publicación:
Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander

dc.contributor.advisorRueda Forero, Nohora Juliana
dc.contributor.advisorSuárez Barrera, Miguel Orlando
dc.contributor.authorBravo Granados, Natalia Andrea
dc.date.accessioned2021-08-21T01:16:20Z
dc.date.available2021-08-21T01:16:20Z
dc.date.issued2021-05-06
dc.descriptionDigitalspa
dc.description.abstractEl suelo es un hábitat diverso, su composición varía dependiendo del uso, condiciones climáticas y actividades antropogénicas; y conocer los microorganismos presentes requiere la implementación de herramientas de secuenciación de nueva generación. Ananás comosus es un cultivo de gran importancia para Santander, sin embargo, los estudios referentes a la caracterización biológica del suelo asociado, son escasas en la región y en el país. En ese sentido, este trabajo se centró en la caracterización microbiana del suelo destinado a un cultivo de piña. Para lograrlo, las muestras se tomaron aleatoriamente de cuatro lotes a 20 cm de profundidad, obteniendo un total de 14 muestras. Se estandarizó el protocolo de extracción de ADN genómico total de suelo y la cantidad de ADN de cada muestra fue >60 ng/μl. Posteriormente se enviaron a secuenciar a MacroGen mediante la plataforma Illumina MiSeq (2x300 pb), obteniéndose un total de 1’518.101 secuencias de las muestras analizadas. El empleo de herramientas metagenómicas como el FASTQC y el MG-RAST, permitieron establecer la calidad de las secuencias obtenidas y la clasificación desde dominio hasta género de los microorganismos presentes en los suelos estudiados. Filo como Actinobacteria (>50%), Acidobacteria (>18%), Firmicutes (>16%) y Verrumicrobia (>10%), se encontraron con mayor predominancia entre las 14 muestras estudiadas. A nivel de género se encontraron en abundancia Candidatus Koribacter, Streptomyces, Isosphaera, Bacillus, Candidatus Solibacter y Actinomadura. Con respecto a la diversidad α, esta varía por las condiciones nutricionales del suelo, es por esto que en la muestra del suelo Blanco los valores de esta diversidad son los más bajos. Finalmente, se evidenció elevada similitud entre la composición de las comunidades microbianas de los cuatro suelos en estudio, indicando que el plaguicida y el bioplaguicida, no tienen un efecto significativo en la composición de la población microbiana presentes en la rizosfera del cultivo de piña.spa
dc.description.abstractThe soil is a diverse habitat, its composition varies depending on the use, climatic conditions and anthropogenic activities; and knowing the groups of microorganisms present requires the implementation of next-generation sequencing tools. Ananas comosus is a crop of great importance for Santander, however, studies referring to the biological characterization of the associated soil are scarce in the region and the country. In this sense, this work focused on the microbial characterization of the soil destined for a pineapple crop. The samples were randomly taken from four batches at a depth of 20 cm, obtaining a total of 14 samples. The total genomic soil DNA extraction protocol was standardized and the amount of DNA in each sample was> 60 ng / μl. Subsequently, they were sent to be sequenced to MacroGen using the Illumina MiSeq platform, obtaining a total of 1,518,101 sequences of the analyzed samples. The use of metagenomic tools such as FASTQC and MG-RAST made it possible to establish the quality of the sequences obtained and the classification from domain to the gender of the microorganisms present in the soils studied. Phylum such as Actinobacteria (> 50%), Acidobacteria (> 18%), Firmicutes (> 16%) and Verrumicrobia (> 10%), were found to be more prevalent among the 14 samples studied. At the genus level, Candidatus Koribacter, Streptomyces, Isosphaera, Bacillus, Candidatus Solibacter and Actinomadura were found in abundance. Concerning the diversiteng
dc.description.degreelevelPregradospa
dc.description.degreenameMicrobiólogo Industrialspa
dc.description.edition1 ed.spa
dc.description.tableofcontentsIntroducción ..............................................................................................................................15 Marco Teórico ...........................................................................................................................18 El Suelo .................................................................................................................................18 Aspectos Físicos del Suelo ................................................................................................19 Aspectos Químicos del Suelo ............................................................................................21 Materia Orgánica ...............................................................................................................23 La Agricultura .....................................................................................................................24 Microbiota del Suelo ..............................................................................................................25 Microorganismos de la Rizosfera .......................................................................................25 Funciones de los Microorganismos ....................................................................................26 Secuenciación de Nueva Generación ....................................................................................28 NGS en la Agricultura ........................................................................................................32 Illumina ..............................................................................................................................33 Análisis Bioinformático de Secuencias ..................................................................................39 MG-RAST como Herramienta Bioinformática .....................................................................41 Análisis Estadístico................................................................................................................43 Past Software ....................................................................................................................44 Estado del Arte .........................................................................................................................46 Marco Legal ..............................................................................................................................50 Planteamiento y Justificación del Problema ..............................................................................51 Pregunta de investigación .........................................................................................................52 Hipótesis ...................................................................................................................................53 Objetivos ...................................................................................................................................54 Objetivo General ...................................................................................................................54 Objetivos Específicos ............................................................................................................54 Metodología ..............................................................................................................................55 Especificaciones del Cultivo de Piña .....................................................................................55 Muestreo ...............................................................................................................................56 Extracción de ADN Genómico ...............................................................................................57 Amplificación y Secuenciación del Gen Ribosomal 16S. .......................................................58 Análisis Bioinformáticos .........................................................................................................58 Análisis Estadísticos ..............................................................................................................59 Análisis Físico-Químicos (realizados por los estudiantes de la UPB, sede Bucaramanga) ....59 Resultados y Análisis de Resultados ........................................................................................60 Extracción y Cuantificación de ADN Metagenómico ..............................................................60 Análisis Bioinformático de Secuencias ..................................................................................61 Clasificación por Dominios .................................................................................................61 Clasificación por filo ...........................................................................................................63 Clasificación por Género ....................................................................................................65 Diversidad α .......................................................................................................................67 Abundancia Relativa de Géneros Dominantes ...................................................................68 Géneros Únicos y Comunes en los Tratamientos ..............................................................69 Géneros predominantes .....................................................................................................71 Análisis Estadísticos ..............................................................................................................73 Análisis de Componentes Principales (ACP) ......................................................................73 Diversidad β .......................................................................................................................77 Discusión ..................................................................................................................................78 Análisis Fisicoquímicos .........................................................................................................78 Propiedades Físicas del Suelo ...........................................................................................78 Propiedades Químicas del Suelo .......................................................................................78 Extracción de ADN ................................................................................................................81 Análisis Bioinformático de Secuencias ..................................................................................83 Clasificación por Dominio ...................................................................................................84 Clasificación por filo ...........................................................................................................85 Clasificación por Género ....................................................................................................91 Diversidad α ..................................................................................................................... 101 Abundancia Relativa y Efecto del Plaguicida (Lorsban) y Bioplaguicida (Nicotina y Capsaicina). ..................................................................................................................... 102 Géneros Únicos y Comunes en los Tratamientos ................................................................ 104 Análisis de Componentes Principales (ACP) ....................................................................... 106 Diversidad β ........................................................................................................................ 107 Conclusiones .......................................................................................................................... 109 Recomendaciones .................................................................................................................. 111 Referencias Bibliográficas ....................................................................................................... 112 Apéndices ............................................................................................................................... 149 Apendice A. Protocolo de Extracción de ADN Estandarizado: Kit E.Z.N.A.® Soil DNA Kit (OMEGA) ............................................................................................................................ 149 Apéndice B. Concentración de ADN Genómico Total de Suelos ......................................... 151 Apéndice C. Calidad del ADN Extraído ................................................................................ 152 Apéndice D. Secuencias Obtenidas por Muestra ................................................................. 153 Apéndice E. Curva de Rarefacción de los Suelos Analizados ............................................. 154 Apéndice F. Prueba de Kruskal Wallis – Composición microbiana sin diferencia significativa ............................................................................................................................................ 156 Apéndice G. Propiedades físicoquímicas de los suelos estudiados, realizados por los estudiantes de la Universidad Pontificia Bolivariana sede Bucaramanga ............................ 157 Cálculo de Nitrógeno de mg NTK/Kg a %. ........................................................................... 159spa
dc.format.extent159 pspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.localT 33.21 B719c
dc.identifier.urihttps://repositorio.udes.edu.co/handle/001/5530
dc.language.isospaspa
dc.publisherBucaramanga : Universidad de Santander, 2021spa
dc.publisher.facultyFacultad de Ciencias Exactas, Naturales y Agropecuariasspa
dc.publisher.placeBucaramanga, Colombiaspa
dc.publisher.programMicrobiología Industrialspa
dc.rightsDerechos Reservados - Universidad de Santander, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.proposalMetagenómicaspa
dc.subject.proposalPiñaspa
dc.subject.proposalADNspa
dc.subject.proposalSecuenciaciónspa
dc.subject.proposalIlluminaMiSeqeng
dc.subject.proposalMetagenomicsspa
dc.subject.proposalPineapplespa
dc.subject.proposalDNAspa
dc.titleCaracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santanderspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceTodas las Audienciasspa
dcterms.referencesAguirre V., Delgado, V. (2010) Pesticidas naturales y sintéticos. Centro de investigaciones Científicas Escuela Politécnica del Ejército. Sangolquí, Ecuador, pp. 43-53.spa
dcterms.referencesAit Barka, E., Gognies, S., Nowak, J., Audran, J., Belarbi, A. (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24: 135–142spa
dcterms.referencesAlaeddini, R. (2012) Forensic implications of PCR inhibition—a review, Forensic Sci. Int. Genet. 6 (3) 297–305.spa
dcterms.referencesAlcaraz, L. (2016) Producción y comercialización de piña Gold. Asociación de productores, comercializadores y transformadores agropecuarios (AGROMUTUA), Valencia, España.spa
dcterms.referencesAndrews, M., James, E., Sprent, J., Boddey, R., Gross, E., dos Reis Jr, F. (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4:131–140spa
dcterms.referencesAngella, G., Frías, C., Salgado, R. (2016). Conceptos básicos de las relaciones agua-suelo-planta. INTA. Buenos Aires-Argentina.spa
dcterms.referencesAraujo, J., de Castro, A., Costa, M., Togawa, R., Júnior, G., Quirino, B., Krüger, R. (2012). Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microbial ecology, 64(3), 760-770.spa
dcterms.referencesArbeli, Z., Fuentes, L. (2007). Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Protect. 26, 1733–1746. doi: 10.1016/j.cropro. 2007.03.009spa
dcterms.referencesArdley, J., Parker, M., De Meyer, S., Trengove, R., O’Hara, G., Reeve, W., Yates, R., Dilworth, M., Willems, A., Howieson, J. (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588spa
dcterms.referencesAshelford, K., Chuzhanova, N., Fry, J., Jones, A., Weightman, A. (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71: 7724–7736.spa
dcterms.referencesAyres, E., Steltzer, H., Simmons, B., Simpson, R., Steinweg, J., Wallenstein, M., Wall, D. (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry, 41(3), 606-610.spa
dcterms.referencesBarranco, J. (2011). Efecto De Los Inhibidores De La Nitrificación Y De Los Productos Derivados De La Menadiona En La Calidad De Los Frutos De La Sandía. Almería: Escuela Politécnica Superior De Almería.spa
dcterms.referencesBecking, L. (1934) Geobiologie, of Inleiding Tot de Milieukunde: Met Literatuurlijst en Ind. Wetenschappelijke Serie. Van Stockum.spa
dcterms.referencesBen Hania, W., Ghodbane, R., Postec, A., Brochier-Armanet, C., Hamdi, M., Fardeau, M., Ollivier, B. (2011) Cultivation of the first mesophilic representative (‘‘mesotoga’’) within the order Thermotogales. Syst Appl Microbiol 34:581–585spa
dcterms.referencesBerendsen, R., Pieterse, C., Bakker, P. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).spa
dcterms.referencesBerge, O., Guinebretie`r, W., Achouak, P., Normand, T., Heulin, P. (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616spa
dcterms.referencesBergmann, G., Bates, S., Eilers, K., Lauber, C., Caporaso, J., Walters, W., Knight, R., Fierer, N. (2011) The under-recognized dominance of verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455spa
dcterms.referencesBiavati, G., Estrada J. (2016). El fósforo en la planta y en el suelo. Bolonia. Kemira Growhow. Recuperado de http://www.horticom.com/pd/imagenes/55/871/55871.pdfspa
dcterms.referencesBinu, M., Woojin, S., Slik, J., Rahayu S., Salwana, J., Dong Ke, Adams Jonathan M. (2016) Distinctive Tropical Forest Variants Have Unique Soil Microbial Communities, But Not Always Low Microbial Diversity. Frontiers in Microbiology. 7 376-382.spa
dcterms.referencesBjörkroth, J., Dicks, L., Endo, A. (2014). The genus Weissella, in Lactic Acid Bacteria, Biodiversity and Taxonomy, eds Holzapfel W. H., Wood B. J. B. (Chichester: Wiley Blackwell; 418–428.spa
dcterms.referencesBlackburn, T., Gaston, K. (2003) Macroecology: concepts and consequences. Blackwell Science, Oxford. Ed: 3.spa
dcterms.referencesBogdanova, T., Tsaphna, I., Kondrat’eva, T., Duda, V., Suzina, N., Melamud, V., Tourova, T., Karavaiko, G. (2006) Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol. 56:1039–1042.spa
dcterms.referencesBomar, L., Maltz, M., Colston, S., Graf, J. (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–11spa
dcterms.referencesBoomsma, C., Vyn, T., (2008). Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis?. Field Crops Res. 108, 14–31. 10.1016/j.fcr.2008.03.002spa
dcterms.referencesBowers, K., Mesbah, N., Wiegel, J. (2009) Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physic-chemical boundary for life? Saline Syst. 5, 9.spa
dcterms.referencesBowman, B., Kim, M., Y-J Cho, J., Korlach, J. (2015) Long-Read, Single Molecule, Real-Time (SMRT) DNA sequencing for metagenomic applications. Metagenomics for Microbiology 2015:25-38.spa
dcterms.referencesBradford, D., Schwab, E. (2013), "Current usage of symbiosis and associated terminology", International Journal of Biology 5 (1): 32–45., doi:10.5539/ijb.v5n1p32spa
dcterms.referencesBrandes-Ammann A, Kölle L, Brandl H. (2001) Detection of bacterial endospores in soil by terbium fluorescence. Int J Microbiol. 11:1-5. Doi:10.1155/2011/435281spa
dcterms.referencesBriceno, G., Fuentes, M.S., Rubilar, O., Jorquera, M., Tortella, G. (2013) Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J. Basic Microbiol. 53, 1e10.spa
dcterms.referencesBrooksbank, C., Bergman, M., Apweiler, R. (2014) The European Bioinformatics Institute’s data resources 2014. Nucleic Acids Res 42 (Database issue):D18–D25spa
dcterms.referencesBruce, T., Martinez, I., Neto, O., Vicente, A., Kruger, R., Thompson, F. (2010) Bacterial community diversity in the Brazilian Atlantic forest soils. Microb Ecol 60:840–849spa
dcterms.referencesBuckley, D., Schmidt, T. (2003) Diversity and dynamics of microbial communities in soils from agroecosystems. Environ. Microbiol. 5:441– 452.spa
dcterms.referencesBunemann, E., Bossio, D., Smithson, P., Frossard, E., Oberson, A. (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901spa
dcterms.referencesBürgmann, H., Pesaro, M., Widmer, F., Zeyer, J. (2001) A strategy for optimizing quality and quantity of DNA extracted from soil, J. Microbiol. Methods 45 (1) 7–20.spa
dcterms.referencesCai, P., Huang, Q., Jiang, D., Rong, X., Liang, W. (2006) Microcalorimetric studies on the adsorption of DNA by soil colloidal particles, Colloids Surf. B: Biointerfaces 49 (1) 49–54.spa
dcterms.referencesCallaway, R. M. et al. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).spa
dcterms.referencesCampbell, B. (2014) "The Family Acidobacteriaceae." The Prokaryotes. Springer Berlin Heidelberg, 405-415.spa
dcterms.referencesCaporaso, J., Kuczynski, J., Stombaugh, J. (2010) QIIME allows analysis of highthroughput community sequencing data. Nat Methods 7:335–336spa
dcterms.referencesCarbonetto, M. (2014). Diversidad de las comunidades microbianas de los suelos pampeanos. Enfoques ecológicos y metagenómicos (Doctoral dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales).spa
dcterms.referencesCardinale, B., Duffy, J., Gonzalez, A. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). https://doi.org/10.1038/nature11148spa
dcterms.referencesCastro, H. (1998), Fundamentos para el conocimiento y manejo de suelos agrícolas. Manual técnico. Tunja. Instituto Universitario Juan de Castellanos. Colombia.spa
dcterms.referencesCespedes, C. (2005). Relevancia de la materia organica del suelo. INIA, 31.spa
dcterms.referencesChallacombe, J., Eichorst, S., Hauser, L., Land M., Xie G. (2001) "Biological consequences of ancient gene acquisition and duplication in the large genome of candidatus solibater usitatus Ellin6076". PLoS ONE 6(9): 248-282.spa
dcterms.referencesChaparro, J., Bhadri, D., Vivanco, J. (2014). "Rhizosphere microbiome assemblage is affected by plant development". The ISME Journal. 8 (4): 790–803. doi:10.1038/ismej.2013.196spa
dcterms.referencesChatli, A., Beri, V., Sidhu, B. (2008) Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian Journal of Microbiology. 48: 267-273.spa
dcterms.referencesChen, Y., Xin, L., Liu, J., Yuan, M., Liu, S., Jiang, W. y Chen, J. (2017). Cambios en la comunidad bacteriana del suelo inducidos por el retorno de la paja a largo plazo. Scientia Agricola , 74 (5), 349-356.spa
dcterms.referencesChoudhary, O., Ghuman, B., Thuy, N., Buresh, R. (2011). Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice–wheat cropping system in a calcareous soil. Field Crops Research, 121(3), 363-372.spa
dcterms.referencesClarridge, J. (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17(4):840-862.spa
dcterms.referencesCole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145.spa
dcterms.referencesCole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145.spa
dcterms.referencesCoppens d’Eeckenbrugge, G., Sanewski, G., Smith, M., Duval, M., Leal, F. (2011) Ananas In: Kole,C. (ed). Wild Crop Relatives: Genomic and Breeding Resources: Tropical and Subtropical Fruits. Springer Science & Business Media, Science - pp.21-41.spa
dcterms.referencesCosta, R., Götz, M., Mrotzek, N., Lottmann, J., Berg, G., Smalla, K. (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS microbiology ecology, 56(2), 236-249.spa
dcterms.referencesCostello, E., Schmidt, S. (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8: 1471–1486.spa
dcterms.referencesCox, M., Peterson, D., Biggs, P. (2010) Solexaqa: at-a-glance quality assessment of illumina second-generation sequencing data. BMC Bioinformatics 11:485spa
dcterms.referencesCraig, J., Chang, F., Kim, J., Obiajulu, S., Brady, S. (2010) Expanding small–molecule functional metagenomics through parallel screening of broad–host–range cosmid environmental DNA libraries in diverse proteobacteria. App Environ Microbiol 76:1633–1641. doi:10.1128/ AEM.02169-09spa
dcterms.referencesCruz-Martínez, K., Suttle, K., Brodie, E., Power, M., Andersen, G., Banfield, J. (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 3:738-744. Doi:10.1038/ismej.2009.16spa
dcterms.referencesCycoń, M., Piotrowska-Seget, Z., Kozdrój, J. (2010) Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soil. Intern. Biodeter. Biodegrad. 64:316 - 323.spa
dcterms.referencesDa Silva, N., Birolli, W., Seleghim, M., Porto, A. (2013). “Biodegradation of the organophosphate pesticide profenofos by Marine Fungi,” in Applied Bioremediation-Active and Passive Approaches, eds Y. B. Patil and P. Rao (Rijeka: InTechWeb), 149–180. doi: 10.5772/56372spa
dcterms.referencesDavis, K., Joseph, S., Janssen, P. (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71: 826–834.spa
dcterms.referencesDavis, K., Sangwan, P., Janssen, P. (2011) Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colonyforming soil bacteria. Environ Microbiol 13: 798–805.spa
dcterms.referencesDe Angelis, K. M., E. L. Brodie, T. Z. DeSantis, G. L. Andersen, S. E. Lindow y M. K. Firestone. (2009) Selective progressive response of soil microbial community to wild oat roots. The ISME Journal 3:168-178.spa
dcterms.referencesDe Vries, F., Liiri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H., Bardgett, R. (2012) Land use alters the resistance and resilience of soil food webs to drought, Nat. Clim. Change, 2, 276–280, doi:10.1038/nclimate1368spa
dcterms.referencesDe Wit, R., Bouvier, T. (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environmental Microbiology. 8(4): 755-758.spa
dcterms.referencesDeAngelis, K., Brodie, E., De Santis, T., Andersen, G., Lindow, S., Firestone, M. (2009). Selective progressive response of soil microbial community to wild oat roots. The ISME journal, 3(2), 168-178spa
dcterms.referencesDeBruyn, J., Nixon, L., Fawaz, M., Johnson, A., Radosevich, M. (2011) Biogeografía global y dinámica estacional cuantitativa de Gemmatimonadetes en el suelo. Microbiología Aplicada y Ambiental 77, 6295–6300spa
dcterms.referencesDelgado-Baquerizo, M., Oliverio, A., Brewer, T., BenaventGonzález, A., Eldridge, .J, Bardgett, R. (2018) A global atlas of the dominant bacteria found in soil. Science. 359:320–5. Delmont, T., Prestat, E., Keegan, K., Faubladier, M., Robe, P., Clark, I. (2012). Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6: 1677–1687.spa
dcterms.referencesDeng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, M., He, Z., Wu, L., Schuur, E., Tiedje, J., Zhou, J. (2015) Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol Ecol. 24(1):222-234. doi:10.1111/mec.13015spa
dcterms.referencesDi Bella, J., Bao, Y., Gloor, G., Burton, J. (2013) High throughput sequencing methods and analysis for microbiome research. Journal of Microbiological Methods 95(3):401-414.spa
dcterms.referencesDillehay, J., Bowman, K., Rainey, F., Moe, W. (2014) Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biaodegradation 25(2):301-312 doi:10.1007/s10532-013-9661-2spa
dcterms.referencesDillehay, J., Bowman, K., Rainey, F., Moe, W. (2014) Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biaodegradation 25(2):301-312 doi:10.1007/s10532-013-9661-2spa
dcterms.referencesDominati, E., Patterson, M., MacKay, A. (2010) A framework for classifying and quantifying natural capital and ecosystem services of soils. Ecological Economics 69: 1858–1868spa
dcterms.referencesDon, A., Schumacher, J., Freibauer, A. (2010) Impact of tropical land use change on soil organic carbon stocks – a meta-analysis, Global Change Biol., 17, 1658–1686.spa
dcterms.referencesEdgar RC (2010) Search and clustering orders of magnitude faster than blast. Bioinformatics 26:2460–2461spa
dcterms.referencesEichorst, S., Breznak, J., Schmidt, T. (2007) Isolation and characterization of soil bacteria that define terriglobus in the phylum acidobacteria. Applied and Environmental Microbiology 73: 2708-2717.spa
dcterms.referencesEpelde, L., Lanzen, A., Blanco, F., Urich, T., Garbisu, C. (2015) Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol Ecol 91:1–11spa
dcterms.referencesFallows J. (2014) When will genomics cure cancer?. The Atlantic. (www.theatlantic.com/magazine/archive/2014/01/when-will-genomics-curecancer/355739/)spa
dcterms.referencesFelske, A., Heyrman, J., Balcaen, A., De Vos, P. (2003). Multiplex PCR screening of soil isolates for novel Bacillus related lineages. J. Microbiol. Methods. 55, 447–458. doi: 10.1016/s0167-7012(03)00191-xspa
dcterms.referencesFeng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., Zhao, Y. (2018). Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology. 18. 10.1186/s12866-018-1152-5.spa
dcterms.referencesFernandez, L. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. México.spa
dcterms.referencesFerrier, S., Guisan, A. (2006) Spatial modeling of biodiversity at the community level. J. Appl. Ecol. 43: 393– 404.spa
dcterms.referencesFierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, et al. (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6: 1007–1017.spa
dcterms.referencesFierer, N., Ladau, J., Clemente, J., Leff, J., Owens, S., Pollard, K., Knight, R., Gilbert, J., McCulley, R. (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624spa
dcterms.referencesFierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., (2009) Global patterns in belowground communities. Ecology Letters 12, 1238-1249.spa
dcterms.referencesFreeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, et al. (2009) Soil CO2 flux and photoautotrophic community composition in high-elevation, ‘barren’ soil. Environ Microbiol 11: 674–686.spa
dcterms.referencesFujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T. (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nature Genetics. 42:931–936.spa
dcterms.referencesFukunaga, Y., Kurahashi, M., Sakiyama, Y., Ohuchi, M., Yokota, A. y Harayama, S. (2009). Phycisphaera mikurensis gen. nov., sp nov., aislado de un alga marina, y propuesta de Phycisphaeraceae fam. nov., Phycisphaerales ord. nov y Phycisphaerae classis nov en el phylum Planctomycetes. J. Gen. Appl. Microbiol 55, 267–275. doi: 10.2323 / jgam.55.267spa
dcterms.referencesGabor, E., de Vries, E., Janssen, D. (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods, FEMS Microbiol. Ecol. 44 (2) 153–163.spa
dcterms.referencesGarbeva, P., vanVeen, J. A., and van Elsas, J. D. (2003). Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb. Ecol. 45, 302–316. doi: 10.1007/s00248-002-2034-8spa
dcterms.referencesGarcia-Fraile P., Menendez E., Rivas R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng. 2, 183–205. 10.3934/bioeng.2015.3.183spa
dcterms.referencesGardener, B. (2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology. 94, 1252–1258. doi: 10.1094/PHYTO.2004.94. 11.1252spa
dcterms.referencesGardner, T., Ferreira, J., Barlow, J., Lees, A., Parry, L., Vieira, I., Berenguer, E., Abramovay, R., Aleixo, A., Andretti, C., (2013) A social and ecological assessment of tropical land uses at multiple scales: The Sustainable Amazon Network. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120166. [spa
dcterms.referencesGaston, K., Rodrigues, A., van Rensburg, B., Koleff, P., Chown, S. (2001) Complementary representation andzones of ecological transition. Ecology Letters, 4, 4–9.spa
dcterms.referencesGilbert, J., Jansson, J., Knight, R. (2014) The earth microbiome project: Successes and aspirations. BMC Biology 12:69spa
dcterms.referencesGomez-Alvarez, V., Teal, T., Schmidt, T. (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317spa
dcterms.referencesGondim-Porto C. (2012). Análisis microbiológico de un suelo agrícola mediterráneo tras la aplicación de lodos de depuradora urbana. Tesis Doctoral. Dept. Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid.spa
dcterms.referencesGontang, E., Fenical, W., Jensen, P. (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl. Environ. Microbiol. 73, 3272-3282.spa
dcterms.referencesGonzales, J. (2014). Efecto del uso y ocupación en las propiedades físicas y químicas en un suelo del piedemonte llanero. Bogotá. Colombia. Universidad Nacional de Colombia Recuperado de http://bdigital.unal.edu.co/46801/1/51627124.2014.pdfspa
dcterms.referencesGoujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., Lopez, R. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. 2010. Nucleic acids research, 38 Suppl: W695-9.spa
dcterms.referencesGu, Y., Zhang, X., Tu, S., Lindstrom K., (2009) Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping, Eur. J. Soil. Biol., 45, 239–246spa
dcterms.referencesGutierrez, C. (2010). Uso De Bioinsecticidas Para El Control De Plagas De Hortalizas En Comunidades Rurales. Revista de Sociedad, Cultura y Desarrollo Sustentable (Ra Ximhai), (6), pp. 17-22.spa
dcterms.referencesHammer, Ø., Harper, D. (2006) Paleontological Data Analysis. Blackwell.spa
dcterms.referencesHammer, Ø., Harper, D., Ryan, P. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.spa
dcterms.referencesHartmann, M., Howes, C., VanInsberghe, D., Yu, H., Bachar, D., Christen, R. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J 6: 2199–2218spa
dcterms.referencesHartmann, M., Widmer, F. (2006) Community structure anañysis are more sensitive to differences in soil bacterial communities tan Anonymous diversity índices. Appl Environ. Microbiol. 72, 7804 – 7812.spa
dcterms.referencesHatfield, J.L. (2006). Erosion: On-Site and Off-Site Impacts In Lal, R. Encyclopedia of Soil Science, 2nd Ed. Taylor& Francis, Retrieved on 17 usugm2014.spa
dcterms.referencesHayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I. (2010). "Soil beneficial bacteria and their role in plant growth promotion:a review". Annual Microbiology. 4: 579–598.spa
dcterms.referencesHemmat, J., Mohammad, D., Safari, S., Ali, A., Mirzaie-asl, A., Tahmourespour, A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology. 27. 1281-1291. 10.1007/s10646-018-1981-x.spa
dcterms.referencesHernández & Peña (2009) La marchitez de la piña producida por cochinillas, ¿Un problema complejo o un complejo de problemas? Instituto de Investigaciones en Fruticultura Tropical. La Habana, Cuba. 24(1):22-28.spa
dcterms.referencesHeungens, K., Parke, J. (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Appl Environ Microbiol 66: 5192–5200spa
dcterms.referencesHerlemann, D., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J., Andersson, A. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579. doi: 10.1038/ismej.2011.41spa
dcterms.referencesHong, C., Si, Y., Xing, Y. (2015) Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res 22, 10788–10799. https://doi.org/10.1007/s11356-015-4186-3spa
dcterms.referencesHong, C., Si, Y., Xing, Y., Li, Y. (2015). Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental science and pollution research international. 22. 10.1007/s11356-015-4186-3.spa
dcterms.referencesHong, C., Si, Y., Xing, Y., Li, Y. (2015). Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental Science and Pollution Research, 22(14), 10788-10799.spa
dcterms.referencesHong, S., Bunge, J., Jeon, S., Epstein, S. (2006) Predicting microbial species richness. Proc Natl Acad Sci U S A 103: 117–122.spa
dcterms.referencesHruska, K., Kaevska, M. (2013) Mycobacteria in water, soil, plants and air: a review. Veterinarni Medicina 57:623– 679.spa
dcterms.referencesHuang, W., Bai, Z., Hoefel, D., Hu, Q., Lv, Q., Zhuang, G., Xu, S., Qi, H., Zhang, H. (2012) Effects of cotton straw amendment on soil fertility and microbial communities. Front Environ Sci Eng 6:336–349spa
dcterms.referencesHubbell, S. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.spa
dcterms.referencesHuber, T., Faulkner, G., Hugenholtz, P. (2004) Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319.spa
dcterms.referencesHulcr, J., Adams, A., Raffa, K., Hofstetter, R., Klepzig, K., Currie, C., (2011) Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb. Ecol. 61, 759-768.spa
dcterms.referencesHung, J., Weng, Z. (2016) Sequence Alignment and Homology Search. Cold Spring Harb Protoc. (11) doi:10.1101/pdb.top093070spa
dcterms.referencesHussain, S., Saleem, M., Arshad, M., Khalid, A. (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Chapter 5. Adv. Agron. 102:159 - 200.spa
dcterms.referencesIFOAM (2013) Criticisms and Frequent Misconceptions about Organic Agriculture: The Counter-Arguments: Misconception Number 7.spa
dcterms.referencesIftikhar, A., Yokota, A., Yamazoe, A., Fujiwara, T. (2007) "Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. International Journal of Systematic Evolutinary Microbiology 57 (5): 1117-1125.spa
dcterms.referencesIlin, A., Raiko, T. (2010) Practical approaches to Principal Component Analysis in the presence of missing values. Journal of Machine Learning Research 11:1957-2000.spa
dcterms.referencesIllumina (2014) Nextera DNA Library Preparation Kits data sheet. (www.illumina.com/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf).spa
dcterms.referencesIllumina (2016) Illumina MiSeq system: Denature and dilute libraries guide. https://support.illumina.com/content/dam/illumina-support/ documents/documentation/system_spa
dcterms.referencesIsanapong, J., Hambright, W., Willis, A., Boonmee, A., Callister, S., Burnum, K., Pasˇa-Tolic´, L., Nicora, C., Wertz, J., Schmidt, T., Rodrigues, J. (2013) Development of an ecophysiological model forDiplosphaera colotermitum TAV2, atermite hindgut Verrucomicrobium. ISME J 7:1803–1813spa
dcterms.referencesJangid, K., Williams, M., Franzluebbers, A., Sanderlin, J., Reeves, J., Jenkins, M., (2008) Endale D.M., Coleman D.S., Whitman W.B., Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems, Soil Biol. Biochem., 40, 2843–2853spa
dcterms.referencesJanssen, P. (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72, 1719-1728.spa
dcterms.referencesJaramillo, D. (2002). Introducción a la Ciencia del Suelo. Medellín.spa
dcterms.referencesJaramillo, D. (2002). Introducción a la ciencia del suelo. Universidad Nacional de Colombia. Facultad de ciencias. Recuperado de http://www.bdigital.unal.edu.co/2242/1/70060838.2002.pdfspa
dcterms.referencesJena, R., Aqel, M., Srivastava, P., Mahanti, P. (2009). Soft computing methodologies in bioinformatics. European Journal of Scientific Research, 26(2), 189-203.spa
dcterms.referencesJia, X., Han, S., Zhao, Y., Zhou, Y. (2006) Comparisons of extraction and purification methods of soil microorganism DNA from rhizosphere soil, J. For. Res. 17 (1) 31–34.spa
dcterms.referencesJohnson, R. Wichern, D. (1998). Applied Multivariate Statistical Analysis, 4th edn. Upper Saddle River, NJ: Prentice-Hall.spa
dcterms.referencesJones, R., Robeson, M., Lauber, C., Hamady, M., Knight, R., Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME journal, 3(4), 442-453.spa
dcterms.referencesJoseph, S. V. (2018). Repellent Effects of Insecticides Against Protaphorura fimata (Collembola: Poduromorpha: Onychiuridae). Journal of economic entomology, 111(2), 747-754.spa
dcterms.referencesKaltenpoth, M., Goettler, W., Koehler, S., Strohm, E., (2009) Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol. Ecol. 24, 463-477.spa
dcterms.referencesKamalakaran, S., Varadan, A., Janevski, N., Banerjee, N. (2013) Translating next generation sequencing to practice: Opportunities and necessary steps. Molecular Oncology 7(4):743-755.spa
dcterms.referencesKamensky, M., Ovadis, M., Chet, I., Chernin, L. (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem. 35(2):323–31.spa
dcterms.referencesKanaly, R., Harayama, S. (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182: 2059–2067.spa
dcterms.referencesKang, S., Radhakrishnan, R., Lee, I. (2015). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J. Microbiol. Biotechnol. 31, 1517–1527. 10.1007/s11274-015-1896-0spa
dcterms.referencesKant, R., Van Passel, M., Palva, A., Lucas, S., Lapidus, A., del Rio, T. (2011) Genome sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium. J Bacteriol. 2011; 193:2902–2903spa
dcterms.referencesKarimi, B., Terrat, S., Dequiedt, S., Saby, N., Horrigue, W., Lelièvre, M., Nowak, V., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Bispo, A., Maron, P., Bouré, N., Ranjard, L. (2018) Biogeography of soil bacteria and archaea across France. Sci Adv 4:1808. https://doi.org/10.1126/sciadv.aat1808.spa
dcterms.referencesKastanis, G., Santana‐Quintero, L., Sanchez‐Leon, M., Lomonaco, S., Brown, E., Allard, M. (2019). In‐depth comparative analysis of Illumina® MiSeq run metrics: Development of a wet‐lab quality assessment tool. Molecular ecology resources, 19(2), 377-387.spa
dcterms.referencesKeegan, K., Trimble, W., Wilkening, J. (2012) A platform-independent method for detecting errors in metagenomic sequencing data, Drisee. PLoS Comput Biol 8:e1002541spa
dcterms.referencesKeppler, F., Borchers, R., Pracht, J., Rheinberger, S., Schöler, H. (2002). Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36: 2479–2483.spa
dcterms.referencesKhadem, A., Pol, A., Jetten, M., Op den Camp, H. (2010) Nitrogen fixation by the verrucomicrobial methanotroph BMethylacidiphilum fumariolicum^ SolV. Microbiology 156:1052–1059spa
dcterms.referencesKhan, K., Joergensen, R. (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100: 303–309spa
dcterms.referencesKhan, S., Tamura, T., Takagi, M., Shin-ya, K., (2010) Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int. J. Syst. Evol. Microbiol. 60, 2775-2779.spa
dcterms.referencesKielak, A., Cipriano, M., Kuramae, E. (2016). "Acidobacteria strains from subdivision 1 act as plant growth‐promoting bacteria". Archives of Microbiology. 198 (10): 987–993. doi:10.1007/s00203-016-1260-2spa
dcterms.referencesKielak, A., Pijl, A., van Veen, J., Kowalchuk, G., (2009) Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J. 3 (3), 378 – 382.spa
dcterms.referencesKieser, T., Bibb, M., Buttner, M., Chater, K., Hopwood, D. (2000) Practical Streptomyces Genetics. JIF, Norwich.spa
dcterms.referencesKim, J., Dungan, R., Kwon, S., Weon, H. (2006) The community composition of root-associated bacteria of the tomato plant. World Journal of Microbiology and Biotechnology 22:1267-1273.spa
dcterms.referencesKim, K., Ahn, J., Kim, T., Park, S., Seong, C., Song, H. (2009). Genetic and phenotypic diversity of fenitrothion-degrading bacteria isolated from soils. J. Microbiol. Biotechnol. 19, 113–120. doi: 10.4014/jmb. 0808.467spa
dcterms.referencesKing, C., Kong, G. (2014) Description of Thermogemmatispora carboxidivorans sp. Nov., a novel carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated fron a geothermally-heated biofilm, and análisis of carbon monoxide oxidation by members of the class Ktedonobacter. Int J Syst Evol Microbiol 64:1244-1251.spa
dcterms.referencesKing, G., Weber, C. (2007) "Distribution, diversity, and ecology of aerobic CO-oxidizing bacteria". Nat. Rev. Microbiol. 5:107-118spa
dcterms.referencesKircher, M., Sawyer, S., Meyer, M. (2012) Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic AcidsRes. 2513–2524.spa
dcterms.referencesKleinsteuber, S., Muller, F., Chatzinotas, A., Wendt-Potthoff, K., Harms, H. (2008). "Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake". FEMS Microbiology Ecology. 63 (1): 107–117. doi:10.1111/j.1574-6941.2007.00402.xspa
dcterms.referencesKlindworth, A., Pruesse, E., Schweer, T., Peplies, J. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1):e1.spa
dcterms.referencesKoleff, P., Gaston, K., Lennon, J. (2003). Measuring beta diversity for presence–absence data. Journal of Animal Ecology, 72(3), 367-382.spa
dcterms.referencesKoboldt, D., Steinberg, K., Larson, D., Wilson, R. (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155(1):27-38.spa
dcterms.referencesKoleva, L., Mitrev, S., Maksimova, V., Spasov, D. (2012). Content of capsaicin extracted from hot pepper (Capsicum annuum ssp. microcarpum L.) and its use as an ecopesticide. Faculty of Agricultural Sciences and Faculty of Medical Sciences, Goce Delcev University, Stip, Macedonia.spa
dcterms.referencesKopecky, J., Kyselkova, M., Omelka, M., Cermak, L., Novotna, J., Grundmann, G., Moënne-Loccoz, Y., Sagova-Mareckova, M. (2011) Environmental mycobacteria closely related to the pathogenic species evidenced in an acidic forest wetland. Soil Biol Biochem 43:697–700. https://doi.org/10.1016/j .soilbio.2010.11.033.spa
dcterms.referencesKopytko, M. (2016) Estudio del efecto de la nicotina y capsaicina como bioinsecticida. Universidad Pontificia Bolivariana. Prototipo Industrial.spa
dcterms.referencesKrzmarzick, M., Crary, B., Harding, J., Oyerinde, O., Leri, A., Myneni, S., (2012). Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microbiol 78: 393–401.spa
dcterms.referencesKulmatiski, A., Beard, K., Heavilin, J. (2012) Plant–soil feedbacks provide an additional explanation for diversity–productivity relationships. Proc. Biol. Sci. 279, 3020–3026.spa
dcterms.referencesKumar, V., AlMomin, S., Al-Aqeel, H., Al-Salameen, F., Nair, S., Shajan, A. (2018) Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One. 13(8). doi: 10.1371/journal.pone.0202127.spa
dcterms.referencesLabeda, D., Kroppenstedt, R. (2005) Stackebrandtia nassauensis gen. nov., sp. nov. and emended description of the family Glycomycetaceae. Int J Syst Evol Microbiol. 55:1687–1691.spa
dcterms.referencesLahr, D., Katz, L. (2009) Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a newgeneration high-fidelity DNA polymerase. Biotechniques 47: 857–866.spa
dcterms.referencesLangmead, B., Trapnell, C., Pop, M. (2009) Ultrafast and memory-effi cient alignment of short DNA sequences to the human genome. Genome Biol 10:R25spa
dcterms.referencesLauber, C., Strickland, M., Bradford, M. Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology & Biochemistry, 40: 2407-2415.spa
dcterms.referencesLee, S., Lee, C., Jung, K., Park, K., Lee, D., Kim, P. (2009) Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res. 104, 227–232.spa
dcterms.referencesLeón, T. S. (2000). Efectos de plantaciones forestales sobre suelo y agua. Síntesis de resultados: 1996-2000. programa Conif - Minambiente sobre evaluaciones del impacto ambiental de las plantaciones forestales en Colombia. Santafé de Bogotá. Serie Técnica ISSN: 0121-0300 ed: CONIF v.1 fasc.47 p.5 – 84.spa
dcterms.referencesLeschine, S., Paster, B. J. & Canale-Parola, E. (2006). Free-living saccharolytic spirochetes: the genus Spirochaeta. In The Prokaryotes 3rd edn, vol. 7, pp. 195–210. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.spa
dcterms.referencesLever, J., Krzywinski, M., Altman, N. (2017) Points of significance: Principal components anlysis. Nature America, Nature Methods. 14 (7) 641-642.spa
dcterms.referencesLi, Q., Liao, S., Zhi, H., Xing, D., Xiao, Y., Yang, Q. (2019). Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilisstrain SEM-9 from silkworm excrement. Can. J. Microbiol. 65, 45–58. doi: 10.1139/cjm-2018-0350spa
dcterms.referencesLi, W., Roberts, D., Dery, P., Meyer, S., Lohrke, S., Lumsden, R., Hebbar, K. (2002) Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21: 129–135spa
dcterms.referencesLiszka, M., Clark, M., Schneider, E., Clark, D. (2012). Nature versus nurture: developing enzymes that function under extreme conditions. Annu. Rev. Chem. Biomol. Eng. 3, 77–102. doi: 10.1146/annurev-chembioeng-061010- 114239spa
dcterms.referencesLópez-Lozano, N., Heidelberg, K., Nelson, W., Garcia-Oliva, F., Eguiarte, L., Souza, V. (2013) Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico. http://dx.doi.org/10.7717/peerj.47.spa
dcterms.referencesLorenz, P., Eck, J. (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516.spa
dcterms.referencesLovelock J., Margulis L. (1970) Captando genomas: Hipótesis de Gaia. P. 184.spa
dcterms.referencesLucero, M., DeBolt, S., Unc, A., Ruiz-Font, A. (2014) Using microbial community interactions within plant microbiomes to advance an evergreen agricultural revolution. En: Sustainable agroecosystems in climate change mitigation. M. Oelbermann (ed.). Wageningen Academic Publishers, Germanyspa
dcterms.referencesLuján, M., Gracia, J., Jordan, A. (2016) Geología del PN de los Alcornocales en torno a Alcalá de los Gazules.spa
dcterms.referencesLynch, M., Bartram, A., Neufeld, J. (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. ISME J 6:2067–2077. doi:10.1038/ismej.2012.50.spa
dcterms.referencesLyngwi, N., Joshi, S. (2014). Economically important Bacillus and related genera: a mini review. in Biology of Useful Plants and Microbes. ed Sen A. (New Delhi: Narosa Publishing House; ), 33–43.spa
dcterms.referencesMaclaurin, J., Sterelny, K. (2008) What is biodiversity? The University of Chicago Press, Chicago. 224 p.spa
dcterms.referencesMandic-Mulec, I., Stefanic, P., Van Elsas, J. (2016). “Ecology of Bacillaceae,” in The Bacterial Spore: From Molecules to Systems, eds P. Eichenberger and A. Driks (Washington, DC: ASM Press), 59–85.spa
dcterms.referencesManivasagan, P., Venkatesan, J., Sivakumar, K., Kim, S., (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol. (168) 311-332.spa
dcterms.referencesMartínez, E., Fuentes, J., Acevedo, E. (2008). Soil organic carbon and soil properties. Scielo, (8), pp. 68-96spa
dcterms.referencesMartínez, J. (2013). Producción y descomposición de hojarasca en sistema silvopastoriles de estrattos múltiples y su efecto sobre propiedades biorganicas y su efecto en el suelo en el valle medio del Rio Sinú. Universidad Nacional de Colombia.spa
dcterms.referencesMartinez-Garcia, M., Brazel, D., Swan, B., Arnosti, C., Chain, P., Reitenga, K., Xie, G., Poulton, N., Lluesma Gomez, M., Masland, D., Thompson, B., Bellows, W., Ziervogel, K., Ahmed, S., Gleasner, C., Detter, C., Stepanauskas, R. (2012) Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS One 7:309-314spa
dcterms.referencesMaster, E., Lai, V., Kuipers, B., Cullen, W., Mohn, W. (2002) Sequential anaerobic–aerobic treatment of soil contaminated with weathered aroclor 1260. Environ Sci Technol 36: 100– 103.spa
dcterms.referencesMayak, S., Tirosh, T., Glick, B. (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530spa
dcterms.referencesMehrshad, M., Salcher, M., Okazaki, Y., Nakano, S., Šimek, K., Andrei, A. (2018) Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome. 6:176.spa
dcterms.referencesMeneses, C., Rozo, L., Franco, J. (2011) Tecnologías bioinformáticas para el análisis de secuencias de ADN. Scientia et Technica Año XVI, No 49:116-121. Universidad Tecnológica de Pereira. ISSN 0122-1701.spa
dcterms.referencesMethé, B., Nelson, K., Pop, M., Creasy, H., Giglio, M., Huttenhower, C., Gevers, D., Petrosino, J., Abubucker, S., Badger, J. (2012) A framework for human microbiome research. Nature 486:215-221.spa
dcterms.referencesMeyer, F., Paarmann, D., D’Souza, M. (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386spa
dcterms.referencesMezzatesta, M., Gona, F., Stefani, S. (2012) Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7: 887-902.spa
dcterms.referencesMikanová, O., Šimon, T., Kopecký, J., Ságová-Marečková, M. (2015) Soil biological characteristics and microbial community structure in a fieldexperiment. Open Life Sci. 10:249–259.spa
dcterms.referencesMiller, C., Baker, B., Thomas, C., Singer, S. (2011) EMIRGE: Reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biology 12(5):R44.spa
dcterms.referencesMiller, C., Handley, K., Wrighton, K., Frischkorn, R. (2013) Short-Read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE 8(2):e56018.spa
dcterms.referencesMizrahi-Man. O., Davenport, E., Gilad, Y. (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE 8(1):e53608.spa
dcterms.referencesMoe, W., Yan, J., Nobre, M., Da Costa, M., Rainey, F. (2009). "Dehalogenimonas lykanthroporepellens gen. Nov., sp. Nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater". International Journal of Systematic and Evolutionary Microbiology. 59 (11): 2692–2697.spa
dcterms.referencesMoreno, C. (2001) Métodos para medir la biodiversidad. M&T-Manuales y tesis SEA, vol.1. Programa Iberoamericano de ciencia y tecnología para el desarrollo. Oficina Regional de Ciencia y Tecnología para América Latina y Caribe, UNESCO. GORFI. Zaragoza.spa
dcterms.referencesMoreno-Barriga, F., Faz, Á., Acosta, J. A, Soriano-Disla, M., Martínez-Martínez, S., Zornoza, R. (2017). Uso de Piptatherum miliaceum para el manejo de fitosanitarios de Technosols modificados con biochar derivados de relaves piríticos para mejorar la agregación del suelo y reducir la movilidad del metal (loid). Geoderma, 307, 159-171. doi: 10.1016 / j. geoderma.2017.07.040spa
dcterms.referencesMorgan, J., Carr, I., Sheridan, E., Chu, C., Hayward, B. (2010) Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat. 31(4):484–91.spa
dcterms.referencesMumy, K., Findlay, R. (2004) Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J Microbiol Methods 57, 259–268.spa
dcterms.referencesMunk, C., Lapidus, A., Copeland, A., Jando, M., Mayilraj, S., Glavina Del Rio, T., Nolan, M., Chen, F., Lucas, S., Tice, H., Cheng, J.F., Han, C., Detter, J.C., Bruce, D., Goodwin, L., Chain, P., Pitluck, S., Goker, M. (2009) Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21). Stand. Genomic Sci. 1:292-299.spa
dcterms.referencesNadal Rocamora, I. (2016). Alteraciones fisiológicas, metabólicas y de la composición de las poblaciones bacterianas de la microbiota de un suelo agrícola tras la aplicación de residuos orgánicos urbanos (Doctoral dissertation, Universidad Complutense de Madrid).spa
dcterms.referencesNaether, A., Foesel, B., Naegele, V., Wüst, P., Weinert, J., Bonkowski, M., Gockel, S. (2012). Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Applied and Environmental Microbiology, 78(20), 7398-7406.spa
dcterms.referencesNagórska, K., Bikowski, M., Obuchowski, M. (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica 54:495-508.spa
dcterms.referencesNakagawa, S., Takai, K., Inagaki, F., Horikoshi, K., Sako, Y. (2005). "Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough". International Journal of Systematic and Evolutionary Microbiology. 55 (2): 925–933. doi:10.1099/ijs.0.63480-0spa
dcterms.referencesNakazato, T., Ohta, T., Bono, H. (2013) Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive. PLoS One. 8(10):e77910.spa
dcterms.referencesNaureen, Z., Rehman, N., Hussain, H., Hussain, J., Gilani, S., Al Housni, S., Mabood, F., Khan, A., Farooq, S., Abbas, G., Harrasi, A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in microbiology, 8, 1477.spa
dcterms.referencesNava, E., García, C., Camacho, J., Vázquez, E. (2012). Bioplaguicidas: una opción para el control biológico de plagas. Ra Ximhai, 8(3), 17-29.spa
dcterms.referencesNavarrete, A., Soares, T., Rossetto, R., van Veen, J., Tsai, S., Kuramae, E. (2015). Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek, 108(3), 741-752.spa
dcterms.referencesNayak, A., Sanjeev, K., Santosh, K., Anjaneya, O., Karegoudar, T. (2011) A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04. FEMS Microbiol Lett. 320: 128–134. https://doi.org/10.1111/j.1574-6968.2011.02301.xspa
dcterms.referencesNesbo, C., Kumaraswamy, R., Dlutek, M., Doolittle, W., Foght, J. (2010) Searching for mesophilic Thermotogales bacteria: ‘‘mesotogas’’ in the wild. Appl Environ Microbiol 76:4896–4900spa
dcterms.referencesNeumann, S., Wessels, H., Rijpstra, W., Sinninghe Damsté, J., Kartal, B., Jetten, M. (2014) Aislamiento y caracterización de un organelo de células procariotas de la bacteria anammox Kuenenia stuttgartiensis . Mol. Microbiol 94, 794–802. doi: 10.1111 / mmi.12816.spa
dcterms.referencesNielsen, S., Minchin, T., Kimber, S., Van Zwieten, L., Gilbert, J., Munroe, P., Joseph, S., Thomas, T. (2014). Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment. 191. 10.1016/j.agee.2014.04.006.spa
dcterms.referencesNieminen, T., Pakarinen, J., Tsitko, I., Salkinoja-Salonen, M., Breitenstein, A., Ali-Vehmas, T., Neubauer, P. (2006) 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J Microbiol Methods 67:44 –55. https://doi.org/10.1016/j.mimet.2006.02 .015.spa
dcterms.referencesNiva, M., Hernesmaa, A., Haahtela, K., Salkinoja-Salonen, M., Sivonen, K., Haukka, K., Haahtela, A., Sivonen, M. (2006) Actinobacterial communities of boreal forest soil and lake water are rich in mycobacteria. Boreal Environ Res 11:45–53spa
dcterms.referencesNorby, B., Fosgate, G., Manning, E., Collins, M., Roussel, A. (2007) Environmental mycobacteria in soil and water on beef ranches: association between presence of cultivable mycobacteria and soil and water physicochemical characteristics. Vet Microbiol 124:153–159. https://doi.org/ 10.1016/j.vetmic.2007.04.015.spa
dcterms.referencesNunes, A., de Almeida, A., Coelho, C. (2011) Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal, Appl. Geogr., 31, 687–699.spa
dcterms.referencesOger, P., Mansouri, H., Nesme, X. Dessaux, Y. (2004). Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47, 96–103.spa
dcterms.referencesOkihiro, G. (2009) Pineapple culture. A history of the tropical and temperate zones. Berkeley: University of California Press.spa
dcterms.referencesOliveros, J. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.htmlspa
dcterms.referencesOMEGA (2016) E.Z.N.A.®Soil DNA Kit. Product manual. HiBind®, E.Z.N.A.®, and MicroElute® are registered trademarks of Omega Bio-tek, Inc.spa
dcterms.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura. (2013). El Manejo Del Suelo En La Producción De Hortalizas Con Buenas Prácticas Agrícolas. Antioquia. FAO Recuperado de http://www.fao.org/3/a-i3361s.pdfspa
dcterms.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura. (2014). Permeabilidad del suelo. FAO Recuperado de http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6706s/.!33794!x6706s09.htmspa
dcterms.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2018). Mapa de Abono Orgánico de Suelo. Italia, Roma. FAO.spa
dcterms.referencesPace, N., Stahl, D., Lane, D., Olsen, G. (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 9:1-55.spa
dcterms.referencesPadmanabhan, R., Mishra, A., Raoult, D., Fournier, P. (2013) Genomics and metagenomics in medical microbiology. Journal of Microbiological Methods 95(3):415-424.spa
dcterms.referencesPan, Y., Cassman, N., de Hollander, M., Mendes, L., Korevaar, H., Geerts, R., Van Veen, J., Kuramae, E. (2014) Impact of long term N, P, K and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol 90:195–205spa
dcterms.referencesPantanella, F., Berlutti, F., Passariello, C., Sarli, S., Morea, C., Schippa, S. (2007) Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102:992–999. doi: 10.1111/j.1365-2672.2006.03155.xspa
dcterms.referencesPapatheodorou, E., Efthimiadou, E., Stamou, G. (2008) Functional diversity of soil bacteria as affected by management practices and phenological stage of Phaseolus vulgaris. European Journal of Soil Biology 44:429-436.spa
dcterms.referencesPaull, R., Duarte, O. (2011) Tropical Fruits, CAB International, 2nd Ed., (1).pp. 327-365spa
dcterms.referencesPearce, D., Newsham, K., Thorne, M., Clavo-Bado, L., Kresk, M., Laskaris, P. (2012) "Metagenomic analysis of a southern mairitime Antartic soil". Frontiers in Microbio. 3:403.spa
dcterms.referencesPearson, W. (2013). An introduction to sequence similarity ("homology") searching. Current protocols in bioinformatics, Chapter 3, Unit3.1. https://doi.org/10.1002/0471250953.bi0301s42spa
dcterms.referencesPentecost, A. (2005). Travertine. Springer Science & Business Media.spa
dcterms.referencesPérez-Montaño, F., Guasch-Vidal, B., González-Barroso, S., López-Baena, F., Cubo, T., Ollero, F., Espuny, M. (2011). Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Research in microbiology, 162(7), 715-723.spa
dcterms.referencesPhilippot, L., Raaijmakers, J. M., Lemanceau, P., Van der Putten, W. (2013) Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 11, 789–799.spa
dcterms.referencesPHOEBE CHEN, Y. (2005) Bioinformatics Technologies. Alemania: Springer-Verlag Berlin Heidelberg, 396p. ISBN 3-540-20873-9spa
dcterms.referencesPitombo, L., Carmo, J., Cantarella, H., Rossetto, R., Hollander, M., López, M., Kuramae, E. (2015) Exploring soil microbial 16S rRNA sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop. Glob Change Biol Bioenergy. doi:10.1111/gcbb.12284spa
dcterms.referencesPlaza-Bonilla, D., Álvaro-Fuentes, J., Cantero-Martínez, C. (2014) Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 139, 19–22spa
dcterms.referencesPointing, S., Chan, Y., Lacap, D., Lau, M., Jurgens, J. (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106: 19964–19969.spa
dcterms.referencesPolti, M., Aparicio, J., Benimeli, C., Amoroso, M. (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int. Biodeterior. Biodegrad. (88) 48-55.spa
dcterms.referencesPorwal, S., Kumar, T., Lal, S., Rani, A., Kumar, S., Cheema, S. (2008). Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour. Technol. 99, 5444– 5451. doi: 10.1016/j.biortech.2007.11.011spa
dcterms.referencesPremaLatha, K., Soni, R., Khan, M., Marla, S., Goel, R. (2009) Exploration of csp gene(s) from temperate and glacier soils of Indian Himalaya and in silico analysis of encoding proteins. Curr Microbiol 58:343–348. doi:10.1007/s00284-008-9344-0spa
dcterms.referencesPukall, R., Lapidus, A., Glavina Del Rio, T., Copeland, A., Tice, H., Cheng, F., Lucas, S., Chen, F., Nolan, M., Bruce, D., Goodwine, L., Pitluck, S. (2010) Complete genome sequence of Conexibacter woesei type strain (ID131577). Stand Genomic Sci. 2(2):212-219. doi:10.4056/sigs.751339spa
dcterms.referencesPutrie, R. F. W., Aryantha, I. N. P., IRIAWATI, I., & Antonius, S. (2020). Diversity of endophytic and rhizosphere bacteria from pineapple (Ananas comosus) plant in semi-arid ecosystem. Biodiversitas Journal of Biological Diversity, 21(7).spa
dcterms.referencesQuince, C., Lanzen, A., Curtis, T., Davenport, R., Hall, N., Head, I., Read, L., Sloan, W. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639–641.spa
dcterms.referencesRabus, R., Boll, M., Heider, J., Meckenstock, R., Buckel, W. (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol. 26: 5–28spa
dcterms.referencesRamos, E., Zúñiga, D. (2008). Efecto de la humedad, temperatura y pH del suelo en la actividad microbiana a nivel de laboratorio. Ecología aplicada, 7(1-2), 123-130.spa
dcterms.referencesRao, J., Rash, B., Nobre, M., da Costa, M., Rainey, F., Moe, W. (2012) Actinomycetes nature sp. Nov., the first Actinomycetessp. Insolated from a non-human or animal source. Antonic van Leeuwenhoek. J Microbiol 101(1):155-168. Doi: 10.1007/s10482-011-9644-4.spa
dcterms.referencesRavi, R., Walton, K., Khosroheidari, M. (2018) MiSeq: A Next Generation Sequencing Platform for Genomic Analysis. Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, (1706) 223 – 232. https://doi.org/10.1007/978-1-4939-7471-9_12spa
dcterms.referencesRay, D. (1991). Pesticides derived from plants and other organisms. In W.J. Hayes, Jr. & E.R. Laws (Eds.), Handbook of Pesticide Toxicology. Vol. 2. (pp.585- 593). Toronto: Academic Press.spa
dcterms.referencesRinke, C., Schwientek, P., Sczyrba, A., Ivanova, N., Anderson, I., Cheng, J., Darling, A., Malfatti, S., Swan, B., Gies, E., Dodsworth, J., Hedlund, B., Tsiamis, G., Sievert, S., Liu, W., Eisen, J., Hallam, S., Kyrpides, N., Stepanauskas, R., Rubin, E., Hugenholtz, P., Woyke, T. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437.spa
dcterms.referencesRios, R. (2005). Estudio de la estimulación biológica para el tratamiento de residuos de perdoracion petrolera empleando lisímetros. Universidad Autónoma Metropolitana. Unidad Iztapalapa. Casa Abierta al Tiempo. México D.F.spa
dcterms.referencesRoss, M., Russ, C., Costello, M. (2013) Characterizing and measuring bias in sequence data. Genome Biol. 14(5):R51.spa
dcterms.referencesRota, C., Millspaugh, J., Rumble, M., Lehman, C., Kesler, D. (2014). The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the black hills, South dakota. PLoS ONE 9:e94700. doi: 10.1371/journal.pone.0094700spa
dcterms.referencesSait, M., Hugenholtz, P., Janssen, P. (2002) Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4:654-666.spa
dcterms.referencesSandhya, V., Ali, S., Grover, M., Reddy, G., Bandi, V. (2011). Drought- tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1–14. 10.1080/17429145.2010.535178spa
dcterms.referencesSchlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S., Kinkel, L., (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb. Ecol. 57, 413-420.spa
dcterms.referencesSchloss, P., Allen, H., Klimowicz, A., Mlot, C., Gross, J., Savengsuksa, S., McEllin, J., Clardy, J., Ruess, R., Handelsman, J. (2010) Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol. 29:533–541. doi: 10.1089/dna.2010.1020spa
dcterms.referencesSchloss, P., Gevers, D., Westcott, S. (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310.spa
dcterms.referencesSchoenborn, L., Yates, P., Grinton, B., Hugenholtz, P., Janssen, P. (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl. Environ. Microbiol. 70, 4363–4366.spa
dcterms.referencesShen, C., Ge, Y., Yang, T., Chu, H. (2017). Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. Journal of Soils and Sediments, 17(10), 2449-2456.spa
dcterms.referencesShen, Y., Kim, H., Tong, M., Li, Q. (2011) Influence of solution chemistry on the deposition and detachment kinetics of RNA on silica surfaces, Colloids Surf. B: Biointerfaces 82 (2) 443–449.spa
dcterms.referencesSim, K., Cox, M., Wopereis, H., Martin, R., Knol, J., Li, M., Cookson, W., Moffatt, M., Kroll, J. (2012) Improved detection of bifidobacteria with optimised 16S rRNAgene based pyrosequencing. PLoS One, 7(3):e32543.spa
dcterms.referencesSoliman, T., Yang, S., Yamazaki, T., Jenke-Kodama, H. (2017). Profiling soil microbial communities with next-generation sequencing: The influence of DNA kit selection and technician technical expertise. PeerJ. 5. 10.7717/peerj.4178.spa
dcterms.referencesSoni, R., Goel, R. (2010) Triphasic approach for assessment of bacterial population in different soil systems. Ekologija 56:94–98. doi:10.2478/v10055-010-0014-8spa
dcterms.referencesSoni, R., Goel, R. (2011) nifH homologous from soil metagenome. Ekologija 57:87–95. doi:10.6001/ ekologija.v57i3.1914spa
dcterms.referencesStegle, O., Teichmann, S., Marioni, J. (2015). Computational and analytical challenges in single-cell transcriptomics. Nature Reviews. Genetics, 16(3), 133–145. https:// doi.org/10.1038/nrg3833.spa
dcterms.referencesStevens, H., Stubner, M., Simon, M., Brinkhoff, T., (2005) Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiol. Ecol. 54, 351–365.spa
dcterms.referencesStockdale, E., Goulding, K., George, T., Murphy, D. (2013). Soil fertility In Gregoty, P.J. & Nortcliff, S. (2013). Soil Conditions and Plant Growth, Ed. WileyBlackwell, U.K. Retrieved on18 rebmetpeS2014spa
dcterms.referencesSurmann, E., Efferth, T. (2014) Biodiversity and metagenomics. In: Kuete V, Efferth T (eds) Biodiversity natural, products and cancer treatment. World Scientific Publishing Co., Singapore, pp 35–69. doi:10.1142/9789814583510_0002spa
dcterms.referencesTago, K., Sekiya, E., Kiho, A., Katsuyama, C., Hoshito, Y., Yamada, N. (2006). Diversity of fenitrothion-degrading bacteria in soils from distant geographical areas. Microbes Environ. 21, 58–64. doi: 10.1264/jsme2.21.58spa
dcterms.referencesTaiwo, L., Adegbite, A. (2001) Effect of arbuscular mycorrhiza and Bradyrhizobium inoculation on growth, N2 fixation and yield of promiscuously nodulating soybean (Glycine max), J. Agri. Res. 2:110–118.spa
dcterms.referencesTakaku, H., Kodaira, A. Kimoto, M. Nashimoto, A., Takagi, M. (2006) Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101:42-50.spa
dcterms.referencesTaylor, R., Williams, W., Sistani, K. (1991) N2 fixation by soybean Bradyrhizobium combinations under acidity, low P, and high Al stressess In: Wright, eds. Plant soil interactions at low pH Dordrecht: Kluwer. pp 293–300.spa
dcterms.referencesTeixeira, L., Peixoto, R., Cury, J., Sul, W., Pellizari, V., Tiedje, J., Rosado, A. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME journal, 4(8), 989-1001.spa
dcterms.referencesThakuria, D., Schmidt, O., Siúrtáin, M., Egan, D., Doohan, F. (2008) Importance of DNA quality in comparative soil microbial community structure analyses, Soil Biol. Biochem. 40 (6) 1390–1403.spa
dcterms.referencesThomas, T., Gilbert, J., Meyer, F. (2012) Metagenomics-a guide from sampling to data analysis. Microbial Informatics and Experimentation 2(3):1-12.spa
dcterms.referencesThompson, L. (2002). Los Suelos y su Fertilidad. Mexico: McGraw-Hill Book Company.spa
dcterms.referencesThompson, L., Sanders, J., McDonald, D., Amir, A., Ladau, J., Locey, K. (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 551:457–63.spa
dcterms.referencesTrân Van, V., Berge, O., Ke, S., Balandreau, J., Heulin, T. (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273–284spa
dcterms.referencesTrimble, W., Keegan, K., D’Souza, M. (2012) Short-read reading-frame predictors are not created equal, sequence error causes loss of signal. BMC Bioinformatics 13:183spa
dcterms.referencesTsaplina, I., Zhuravleva, A., Egorova, M., Bogdanova, T., Krasil’nikova, E., Zakharchuk, L., Kondrat’eva, T. (2010) Response to oxygen limitation in bacteria of the genus sulfobacillus. Microbiology. 79:13–22.spa
dcterms.referencesTsiafouli, M., Thebault, E., Sgardelis, S., de Ruiter, P., van der Putten, W., Birkhofer, K., Hemerik, L., de Vries, F., Bardgett, R., Brady, M. (2016) Intensive agriculture reduces soil biodiversity across Europe, Global Change Biol., 21, 973– 985.spa
dcterms.referencesTuomisto, H. (2010). A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33(1), 2-22.spa
dcterms.referencesUroz, S., Buée, M., Murat, C., Frey-Klett, P., Martin, F. (2010). Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2: 281–288spa
dcterms.referencesUroz, S., Buee, M., Murat, C., Frey-Klett, P., Martin, F. (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2, 281–288.spa
dcterms.referencesValdes, N., Soto, P., Cottet, L., Alarcon, P., Gonzalez, A., Castillo, A., Corsini, G., Tello, M. (2015) Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand. Genom. Sci. 10:110. doi: 10.1186/s40793-015-0104-z.spa
dcterms.referencesVan Dijk, E., Auger, H., Jaszczyszyn, Y., Thermes, C. (2014) Ten years of next-generation sequencing technology. Trends Genet. (9):418–426.spa
dcterms.referencesVan Passel, M., Kant, R., Palva, A., Copeland, A., Lucas, S., Lapidus, A. (2011) Genome sequence of the verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. J Bacteriol. 193:2367–2368spa
dcterms.referencesVessey, J. (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571-586.spa
dcterms.referencesVivas, A., Barea, J., Azcon, R. (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134(2):257–266spa
dcterms.referencesWang, J., Jenkins, R. Webb, J., Fuerst, A. (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl. Environ. Microbiol. 68(1):417–422.spa
dcterms.referencesWang, K., Yan, P., Cao, L., Ding, Q,, Shao, C., Zhao, T. (2013) Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Research International. Article ID 397142. https://doi.org/10.1155/2013/397142spa
dcterms.referencesWard, N. (2010). “Filo XXV. Planctomycetes Garrity y Holt 2001, 137 enmienda. Ward ", en el Manual de Bergey de bacteriología sistemática: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae y Planctomycetes, Vol. 4, eds NR Krieg, JT Staley, DR Brown, BP Hedlund, BJ Paster y NL Ward (Nueva York, NY: Springer), 879–925. doi: 10.1007 / 978-0-387-68572-4_14spa
dcterms.referencesWard, N., Challacombe, J., Janssen, P. (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75 (7), 2046–2056.spa
dcterms.referencesWard, N., Staley, J., Fuerst, J., Giovannoni, S., Schlesner, H., Stackebrandt, E. (2006). The order planctomycetales, including the genera planctomyces, pirellula, gemmata and isosphaera and the candidatus genera brocadia, kuenenia and scalindua. Chapter 8.1. Prokaryotes 7:757 – 793.spa
dcterms.referencesWatling, H., Perrot, F., Shiers, D. (2008) Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments. Hydrometallurgy. 93:57–65.spa
dcterms.referencesWatve, M., Tickoo, R., Jog, M., Bhole, B. (2001) How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176, 386-390.spa
dcterms.referencesWei, Z., Yang, X., Yin, S., Shen, Q., Ran, W., Xu, Y. (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology 48:152-159spa
dcterms.referencesWhitman, W. (2015) Bergey’s manual of systematics of Archaea and Bacteria. Wiley Online Library; New York, United States.spa
dcterms.referencesWhittaker, R. (1972) Evolution and measurement of species diversity. Taxon 21: p. 213–251.spa
dcterms.referencesWilkening, J., Wilke, A., Desai, N. (2009) Using clouds for metagenomics. A case study. In: IEEE Cluster, 2009spa
dcterms.referencesWooley, J., Godzik, A., Friedberg, I. (2010) A primer on metagenomics. PLoS ONE 6:e1000667.spa
dcterms.referencesXu, M., Zhang, Q., Xia, C., Zhang, Y., Sun, G., Guo, J. (2014) Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 8: 1932–1944. https:// doi.org/10.1038/ismej.2014.42 PMID: 24671084spa
dcterms.referencesYarza, P., Yilmaz, P., Pruesse, E., Glockner, F. (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12(9):635-645.spa
dcterms.referencesYuan, C., Lei, J., Cole, J., Sun, Y. (2015) Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics 31(12):i35–i43.spa
dcterms.referencesZakharova, S., Zenova, G., Zvyagintsev, D. (2003). Some approaches to the selective isolation of actinomycetes of the genus Actinomadura from soil. Microbiology, 72: 110–113.spa
dcterms.referencesZambrano, B. (2019) Análisis de cambios en las propiedades fisicoquímicas y microbiológicas de un suelo cultivado con piña y sometido a la fumigación con el insecticida químico y biológico en el municipio de Lebrija, Santander. Tesis de pregrado. Universidad Pontificia Bolivariana. Bucaramanga, Santander.spa
dcterms.referencesZavarzina, D., Tourova, T., Kolganova, T., Boulygina, E., Zhilina, T. (2009) Description of Anaerobacillus alkalilacustre gen. nov., sp. nov. Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology. 78:723–731.spa
dcterms.referencesZenova, G., Zakharova, O., Zvyagintsev, D., (2001) The Ecological Status of Actinomycetes of the Genus Actinomadura, Pochvovedenie. no. 4.spa
dcterms.referencesZhang, L., Xu, Z., (2008) Assessing bacterial diversity in soil. Journal of Soils and Sediments 8, 379-388.spa
dcterms.referencesZhao, J., Guo, L., Sun, P., Han, C., Bai, L., Liu, C., Li, Y., Xiang, W., Wang, X. (2015) Actinomadura jiaoheensis sp. nov. and Actinomadura sporangiiformans sp. nov., two novel actinomycetes isolated from muddy soil and emended description of the genus Actinomadura. Antonie Van Leeuwenhoek 108:1331–1339.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_71e4c1898caa6e32spa
Archivos
Paquete original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Caracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdf
Tamaño:
2.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento Principal
Paquete de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
59 B
Formato:
Item-specific license agreed upon to submission
Descripción: